- Иррациональность дроби — как правильно избавиться от знака корня в знаменателе?
- Определение иррациональности
- Правила избавления от радикала
- Использование средств преобразования
- Иррациональность в знаменателе
- Как избавиться от иррациональности
- Что такое иррациональность в знаменателе дроби
- Как избавиться от иррациональности, когда в знаменателе только один корень
- № 366 (1) Колягин, Алимов 9 класс
- Как избавиться от иррациональности, когда в знаменателе несколько корней
- № 366 (3) Колягин, Алимов 9 класс
- Примеры освобождения от иррациональности в знаменателе
- № 366 (2; 7) Колягин, Алимов 9 класс
- № 557 (5) Мерзляк 9 класс
Иррациональность дроби — как правильно избавиться от знака корня в знаменателе?
Выполняя преобразование выражений с радикалами, важно знать, как заменить дробь или как избавиться от иррациональности в знаменателе. Математическое правило, которое предполагает освобождение от радикала, основано на действиях с сопряженными выражениями. Для правильного выполнения действий с иррациональными дробями следует знать понятие рационального числа.
Определение иррациональности
Часто в задачах по математике можно встретить примеры, которые содержат иррациональность. Если условие направлено на избавление от нее, значит, нужно выполнить математические действия с рациональными числами. Иррациональны дроби, нижняя часть которых содержит подкоренное выражение.
Присутствие квадратного корня в математическом примере следует исключить, согласно правилу, требующему преобразования в рациональное число радикала. В результате действий он будет в числителе. Преобразованный пример, содержащий иррациональность, не теряет своего исходного значения.
Правила избавления от радикала
Придерживаясь общего правила замены подкоренной части тождественно равным выражением, можно освободиться от иррациональности в знаменателе дроби. Достаточно выполнить несложное действие умножения дроби на выражение, которое содержит знак радикала и сопряжено с нижней частью. Полученная в результате дробь не должна содержать подкоренной части.
Общее правило позволяет извлечь из знаменателя квадратный корень. Аналогично можно решать примеры, вычисляя радикал любой степени. Облегчить задачу поможет специальный онлайн-калькулятор. Рациональное число достаточно представить в виде произведения АВ, если это значение не имеет знака радикала. При этом А и В сопряжены между собой.
Например, чтобы представить корень кубический из дроби с числами 1 и 3 в верхней и нижней части, нужно выполнить следующие действия:
Для решения подобных примеров иногда нужно домножить 2 члена дробного выражения на разность между корнями, когда делитель представлен в виде суммы.
Если он выражен как разность составляющих, то следует умножить дробь на радикал из суммы аналогичных чисел. В примерах, которые содержат радикалы, имеющие различные показатели, вначале избавляются от одного корня, а затем от другого.
Использование средств преобразования
Способ приведения иррационального примера к рациональному виду зависит от нижней части с радикалом. Он может включать несколько подкоренных выражений. Если решение алгебраической задачи требует уничтожить иррациональность, тогда нужно освободить выражение от иррациональности в знаменателе. Используемый способ зависит от вида выражения, представляющего собой дробь, нижняя часть которой имеет:
- сумму или разницу квадратных корней;
- радикал 2-й степени;
- разницу либо сумму радикалов 3-й степени;
- иррациональное значение в виде корня n-й степени.
В последнем случае необходимо для избавления знаменателя дроби от иррациональности подобрать множитель, позволяющий извлечь целый корень. Подкоренное выражение, представленное как число в k-й степени, нужно привести к рациональному виду. Учитывая, что n>k, число под корнем возводят в степень n-k. При этом обе дробные части умножают на сопряженное выражение.
Пользуясь правилом преобразования выражений с радикалом, следует помнить о том, что нужно обязательно получить рациональное число. Приводить к таком виду можно разные примеры с корнями. Искомое число дают 2 корня, взятые в виде суммы и разности при умножении на сопряженное выражение с противоположным знаком.
Результат можно представить аналогичным способом, если числитель и знаменатель содержат не 2 корня, а сумму или разность числа и радикала. Зная, как избавляться от иррациональности в знаменателе дроби, на его вид нужно обратить внимание в первую очередь. Это позволит правильно упростить выражение и убрать корень.
Более сложные примеры могут потребовать возведения в степень иррационального знаменателя дроби. Замену дроби с иррациональным числителем либо знаменателем производят на тождественное ей дробное выражение. Оно содержит рациональный числитель или знаменатель, а действие является уничтожением иррациональности.
Для избавления знаменателя дроби от подкоренной части применяют формулы сокращенного умножения, или ФСУ. Умножая разность корней на их сумму, можно получить разность квадратов радикалов, которая будет рациональным числом.
Источник
Иррациональность в знаменателе
Если дробь содержит корень в знаменателе, то мы говорим об иррациональности в знаменателе дроби. Часто бывает необходимо освободиться от иррациональности в знаменателе дроби. То есть заменить исходную дробь, содержащую иррациональность в знаменателе на тождественно равную ей дробь, которая иррациональность не содержит. Как это сделать?
Общее правило такое: нужно числитель и знаменатель дроби умножить на выражение, сопряженное знаменателю дроби.
Выражение А называется сопряженным иррациональному выражению В, если произведение АВ не содержит знака корня, то есть произведение АВ является рациональным числом.
Рассмотрим примеры сопряженных выражений.
1. Иррациональное выражение В содержит квадратный корень.
Возможны два случая:
a) . В этом случае
:
Например, чтобы исключить иррациональность из знаменателя в дроби , нужно числитель и знаменатель дроби умножить на
, получим
Внимание! Обязательно умножаем на выражение, сопряженное знаменателю и числитель, и знаменатель дроби — только в этом случае мы получим дробь, тождественно равную исходной.
б) ,
=0;
b>=0, a<>b»/>
В этом случае сопряженным выражением будет дополняющее до разности квадратов:
Для выражения сопряженным будет
:
Соответственно, для выражения сопряженным будет
:
Например, исключим иррациональность из знаменателя дроби
Для этого умножим числитель и знаменатель дроби на выражение, сопряженное знаменателю, то есть на
Получим:
2. Иррациональное выражение В содержит корень n-й степени:
В этом случае сопряженное выражение :
Пример: исключим иррациональность из знаменателя дроби
Умножим числитель и знаменатель дроби на выражение . Получим:
3. Иррациональное выражение В является одним из множителей в разложении на множители разности или суммы кубов. В этом случае сопряженным ему выражением будет второй множитель:
Исключим иррациональность из знаменателя дроби:
Рассмотрим пример упрощения выражения, содержащего иррациональность в знаменателе дроби.
Найти значение выражения:
Внимание! Если нужно упростить выражение, содержащее иррациональность в знаменателе, то первым делом исключаем иррациональность из знаменателя, даже если кажется, что без этого можно обойтись.
Итак, исключим иррациональность из знаменателя первой и второй дроби:
Подставим полученные выражения в исходное:
И.В. Фельдман, репетитор по математике.
Источник
Как избавиться от иррациональности
Иррациональностью в знаменателе (нижней части дроби) называют наличие корней в знаменателе.
Что такое иррациональность в знаменателе дроби
Рассмотрим на примерах ниже, в каких дробях в знаменателе есть иррациональность, а в каких её нет.
-
√ 6 2 в знаменателе нет корней, значит иррациональности нет ;
-
5 √ 6 в знаменателе есть
корень « √ 6 » — иррациональность в знаменателе есть . -
4 √ 7 − √ 3 в знаменателе есть корни « √ 7 » и « √ 3 » — иррациональность есть .
-
a + b √ c − 3 в знаменателе есть
корень « √ c − 3 » — иррациональность в знаменателе есть .
Избавиться от иррациональности в знаменателе означает убрать все корни из знаменателя.
Возникает логичный вопрос, как это можно сделать?
Чаще всего встречаются два вида примеров. Рассмотрим решение обоих видов.
Как избавиться от иррациональности, когда в знаменателе только один корень
На помощь приходит основное свойство дроби. Вспомним, что оно позволяет умножить и разделить дробь на одно и то же число, чтобы в конечном итоге дробь не изменилась.
Чтобы избавиться от иррациональности в знаменателе с одним корнем, нужно умножить и числитель, и знаменатель на корень из знаменателя.
По традиции разберемся на практике.
№ 366 (1) Колягин, Алимов 9 класс
Исключить иррациональность из знаменателя:
Зададим себе вопрос, на что нужно умножить « √ 5 » в знаменателе, чтобы избавиться от корня.
Ответ: на « √ 5 ». В самом деле, если квадратный корень умножить сам на себя получится число под корнем. Проверим.
√ 5 · √ 5 = √ 5 · 5 = √ 5 2 = 5
Используем основное свойство дроби, умножим и числитель, и знаменатель на « √ 5 », чтобы избавиться от корня в знаменателе.
3 |
√ 5 |
=
3 · √ 5 |
√ 5 · √ 5 |
=
3 · √ 5 |
√ 5 · 5 |
=
3 · √ 5 |
√ 5 2 |
=
=
3 · √ 5 |
5 |
Как избавиться от иррациональности, когда в знаменателе несколько корней
Чтобы избавиться от иррациональности в знаменателе c несколькими корнями, нужно использовать формулы сокращённого умножения.
Разберемся по традиции на примере.
№ 366 (3) Колягин, Алимов 9 класс
Исключить иррациональность из знаменателя:
На что нужно умножить знаменатель « 2 − √ 3 » , чтобы убрать из него корень?
Теперь недостаточно умножить знаменатель на « √ 3 » , ведь в таком случае все равно остается квадратный корень.
(2 − √ 3 ) · √ 3 = 2 √ 3 − √ 3 · √ 3 =
Мы видим, что корень никуда не исчез. Нужно искать другие варианты решения.
Вспомним формулу сокращенного умножения «Разность квадратов».
Формула разности квадратов также работает в обратную сторону.
Представим, что « 2 − √ 3 » — это часть формулы.
Логично предположить, что в формуле « a » — это « 2 », « b » — « √ 3 ». Подставим вместо знаков « ? » числа.
(a + b)(a − b) = a 2 − b 2
(2 + √ 3 )(2 − √ 3 ) = 2 2 − √ 3 2 = 4 − 3 = 1
То есть, чтобы избавиться от иррациональности в дроби требуется умножить знаменатель « 2 − √ 3 »
на « 2 + √ 3 » и через формулу «Разность квадратов» убрать квадратные корни.
Не забываем, что по основному свойству дроби мы обязаны также умножить числитель на « 2 + √ 3 ».
1 |
2 − √ 3 |
=
1 · (2 + √ 3 ) |
(2 − √ 3 ) · ( 2 + √ 3 ) |
=
=
2 + √ 3 |
2 2 − √ 3 2 |
=
2 + √ 3 |
4 − 3 |
=
2 + √ 3 |
1 |
= 2 + √ 3
Примеры освобождения от иррациональности в знаменателе
№ 366 (2; 7) Колягин, Алимов 9 класс
Исключить иррациональность из знаменателя:
2)
2 |
√ 6 |
2 |
√ 6 |
=
2 · √ 6 |
√ 6 · √ 6 |
=
2 · √ 6 |
√ 6 · 6 |
=
2· √ 6 |
√ 6 2 |
=
=
2 · √ 6 |
6 |
Рассмотрим пример, когда в знаменателе несколько корней.
7)
√ 5 − √ 7 |
√ 5 + √ 7 |
=
Используем формулу сокращенного умножения «Разность квадратов».
Умножим и числитель, и знаменатель на «( √ 5 − √ 7 )», чтобы использовать формулу сокращённого умножения в знаменателе и избавиться от корней.
√ 5 − √ 7 |
√ 5 + √ 7 |
=
( √ 5 − √ 7 ) ( √ 5 − √ 7 ) |
( √ 5 + √ 7 ) ( √ 5 − √ 7 ) |
=
=
( √ 5 − √ 7 ) 2 |
√ 5 2 − √ 7 2 |
= …
Используем в числителе (наверху в дроби) формулу «Квадрат разности».
(a − b) 2 = a 2 − 2ab + b 2
√ 5 − √ 7 |
√ 5 + √ 7 |
=
( √ 5 − √ 7 ) ( √ 5 − √ 7 ) |
( √ 5 + √ 7 ) ( √ 5 − √ 7 ) |
=
=
( √ 5 − √ 7 ) 2 |
√ 5 2 − √ 7 2 |
=
=
( √ 5 ) 2 − 2 · √ 5 · √ 7 + ( √ 7 ) 2 |
√ 5 2 − √ 7 2 |
=
=
5 − 2 √ 5 · 7 + 7 |
5 − 7 |
=
12 − 2 √ 35 |
− 2 |
=
= −
12 − 2 √ 35 |
2 |
= …
√ 5 − √ 7 |
√ 5 + √ 7 |
=
( √ 5 − √ 7 ) ( √ 5 − √ 7 ) |
( √ 5 + √ 7 ) ( √ 5 − √ 7 ) |
=
=
( √ 5 − √ 7 ) 2 |
√ 5 2 − √ 7 2 |
=
=
( √ 5 ) 2 − 2 · √ 5 · √ 7 + ( √ 7 ) 2 |
√ 5 2 − √ 7 2 |
=
=
5 − 2 √ 5 · 7 + 7 |
5 − 7 |
=
12 − 2 √ 35 |
− 2 |
=
= −
12 − 2 √ 35 |
2 |
= −
2 · (6 − √ 35 ) |
2 |
=
= −
2 (6 − √ 35 ) |
2 |
=
= − (6 − √ 35 ) = −6 + √ 35
№ 557 (5) Мерзляк 9 класс
Освободитесь от иррациональности в знаменателе дроби:
5)
1 |
√ a − √ b |
Используем формулу сокращенного умножения «Разность квадратов».
Умножим и числитель, и знаменатель на « ( √ a + √ b ) », чтобы использовать формулу «Разность квадратов» в знаменателе и освободиться от корней.
Источник