Для того чтобы избавиться от знаменателями

Содержание
  1. Калькулятор дробей
  2. Как перевести смешанную дробь в обыкновенную
  3. Как перевести обыкновенную дробь в смешанную
  4. Как перевести обыкновенную дробь в десятичную
  5. Как перевести десятичную дробь в обыкновенную или смешанную
  6. Как перевести дробь в проценты
  7. Как перевести проценты в дробь
  8. Сложение дробей
  9. Вычитание дробей
  10. Умножение дробей
  11. Деление дробей
  12. Решение уравнений с дробями
  13. Понятие дроби
  14. Понятие уравнения
  15. Понятие дробного уравнения
  16. Как решать уравнения с дробями
  17. 1. Метод пропорции
  18. 2. Метод избавления от дробей
  19. Примеры решения дробных уравнений
  20. Как освободиться от иррациональности в знаменателе: способы, примеры, решения
  21. Понятие освобождения от иррациональности в знаменателе
  22. Основные действия для избавления от иррациональности в знаменателе дроби
  23. Как преобразовать выражение в знаменателе дроби
  24. Избавление от иррациональности методом умножения на корень
  25. Избавление от иррациональности методом умножения на сопряженное выражение
  26. Преобразование дробей с иррациональностью в знаменателе с использованием формул суммы и разности кубов
  27. Последовательное применение различных способов преобразования

Калькулятор дробей

Как перевести смешанную дробь в обыкновенную

Для того, чтобы перевести смешанную дробь в обыкновенную, необходимо к числителю дроби прибавить произведение целой части и знаменателя: i n d = i · d + n d

5 3 4 = 5 · 4 + 3 4 = 23 4

Как перевести обыкновенную дробь в смешанную

Для того, чтобы перевести обыкновенную дробь в смешанную, необходимо:

  1. Поделить числитель дроби на её знаменатель
  2. Результат от деления будет являться целой частью
  3. Остаток отделения будет являться числителем

Как перевести обыкновенную дробь в десятичную

Для того, чтобы перевести обыкновенную дробь в десятичную, нужно разделить её числитель на знаменатель.

Как перевести десятичную дробь в обыкновенную или смешанную

Для того, чтобы перевести десятичную дробь в обыкновенную, необходимо:

  1. Записать дробь в виде десятичная дробь 1
  2. Умножать числитель и знаменатель на 10 до тех пор, пока числитель не станет целым числом.
  3. Найти наибольший общий делитель и сократить дробь.

Например, переведем 0.36 в обыкновенную дробь:

  1. Записываем дробь в виде: 0.36 1
  2. Умножаем на 10 два раза, получим 36 100
  3. Сокращаем дробь 36 100 = 9 25

Как перевести дробь в проценты

Для того, чтобы перевести обыкновенную или смешанную дробь в проценты, необходимо перевести её в десятичную дробь и умножить на 100.

Как перевести проценты в дробь

Для того, чтобы перевести проценты в дробь, необходимо получить из процентов десятичную дробь (разделив на 100), затем полученную десятичную дробь перевести в обыкновенную.

Сложение дробей

Алгоритм действий при сложении двух дробей такой:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
  3. Выполнить сложение дробей путем сложения их числителей.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Вычитание дробей

Алгоритм действий при вычитании двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
  3. Вычесть одну дробь из другой, путем вычитания числителя второй дроби из числителя первой.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Умножение дробей

Алгоритм действий при умножении двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
  3. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  4. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Деление дробей

Алгоритм действий при делении двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Чтобы произвести деление дробей, нужно преобразовать вторую дробь, поменяв местами её числитель и знаменатель, а затем произвести умножение дробей.
  3. Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Источник

Решение уравнений с дробями

О чем эта статья:

5 класс, 6 класс, 7 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это запись числа в математике, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 — 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x — y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3\5.

Основные свойства дробей
  1. Дробь не имеет значения, при условии, если делитель равен нулю.
  2. Дробь равна нулю, если числитель равен нулю, а знаменатель — нет.
  3. Две дроби a/b и c/d называются равными, если a * d = b * c.
  4. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь
Читайте также:  Устройство клещей для измерения переменного тока

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Ты можешь записаться на онлайн-уроки по математике для учеников 1-11 классов!

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

Универсальный алгоритм решения
  1. Определить область допустимых значений.
  2. Найти общий знаменатель.
  3. Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.
  4. Раскрыть скобки, если нужно и привести подобные слагаемые.
  5. Решить полученное уравнение.
  6. Сравнить полученные корни с областью допустимых значений.
  7. Записать ответ, который прошел проверку.

А теперь еще несколько способов, которые пригодятся ребенку на уроках математики.

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении
  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

А вот и полезные видео для закрепления материала:

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравнения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Переведем новый множитель в числитель..

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение:

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Ответ: нет решения.

    Если нужно решить уравнение с дробями быстро — поможет онлайн-калькулятор дробей. Пользуйтесь им, если уже разобрались с темой и щелкаете задачки легко и без помощников:

    Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

    Записаться на марафон

    Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

    Источник

    Как освободиться от иррациональности в знаменателе: способы, примеры, решения

    При изучении преобразований иррационального выражения очень важным является вопрос о том, как освободиться от иррациональности в знаменателе дроби. Целью этой статьи является объяснение этого действия на конкретных примерах задач. В первом пункте мы рассмотрим основные правила данного преобразования, а во втором – характерные примеры с подробными пояснениями.

    Понятие освобождения от иррациональности в знаменателе

    Начнем с пояснения, в чем вообще заключается смысл такого преобразования. Для этого вспомним следующие положения.

    Об иррациональности в знаменателе дроби можно говорить в том случае, если там присутствует радикал, он же знак корня. Числа, которые записаны при помощи такого знака, часто относятся к числу иррациональных. Примерами могут быть 1 2 , — 2 x + 3 , x + y x — 2 · x · y + 1 , 11 7 — 5 . К дробям с иррациональными знаменателями также относятся те, что имеют там знаки корней различной степени (квадратный, кубический и т.д.), например, 3 4 3 , 1 x + x · y 4 + y . Избавляться от иррациональности следует для упрощения выражения и облегчения дальнейших вычислений. Сформулируем основное определение:

    Освободиться от иррациональности в знаменателе дроби – значит преобразовать ее, заменив на тождественно равную дробь, в знаменателе которой не содержится корней и степеней.

    Такое действие может называться освобождением или избавлением от иррациональности, смысл при этом остается тем же. Так, переход от 1 2 к 2 2 , т.е. к дроби с равным значением без знака корня в знаменателе и будет нужным нам действием. Приведем еще один пример: у нас есть дробь x x — y . Проведем необходимые преобразования и получим тождественно равную ей дробь x · x + y x — y , освободившись от иррациональности в знаменателе.

    После формулировки определения мы можем переходить непосредственно к изучению последовательности действий, которые нужно выполнить для такого преобразования.

    Основные действия для избавления от иррациональности в знаменателе дроби

    Для освобождения от корней нужно провести два последовательных преобразования дроби: умножить обе части дроби на число, отличное от нуля, а затем преобразовать выражение, получившееся в знаменателе. Рассмотрим основные случаи.

    В наиболее простом случае можно обойтись преобразованием знаменателя. Например, мы можем взять дробь со знаменателем, равным корню из 9 . Вычислив 9 , мы запишем в знаменателе 3 и избавимся таким образом от иррациональности.

    Однако гораздо чаще приходится предварительно умножать числитель и знаменатель на такое число, которое потом позволит привести знаменатель к нужному виду (без корней). Так, если мы выполним умножение 1 x + 1 на x + 1 , мы получим дробь x + 1 x + 1 · x + 1 и сможем заменить выражение в ее знаменателе на x + 1 . Так мы преобразовали 1 x + 1 в x + 1 x + 1 , избавившись от иррациональности.

    Иногда преобразования, которые нужно выполнить, бывают довольно специфическими. Разберем несколько наглядных примеров.

    Как преобразовать выражение в знаменателе дроби

    Как мы уже говорили, проще всего выполнить преобразование знаменателя.

    Условие: освободите дробь 1 2 · 18 + 50 от иррациональности в знаменателе.

    Решение

    Для начала раскроем скобки и получим выражение 1 2 · 18 + 2 · 50 . Используя основные свойства корней, перейдем к выражению 1 2 · 18 + 2 · 50 . Вычисляем значения обоих выражений под корнями и получаем 1 36 + 100 . Здесь уже можно извлечь корни. В итоге у нас получилась дробь 1 6 + 10 , равная 1 16 . На этом преобразования можно закончить.

    Запишем ход всего решения без комментариев:

    1 2 · 18 + 50 = 1 2 · 18 + 2 · 50 = = 1 2 · 18 + 2 · 50 = 1 36 + 100 = 1 6 + 10 = 1 16

    Ответ: 1 2 · 18 + 50 = 1 16 .

    Условие: дана дробь 7 — x ( x + 1 ) 2 . Избавьтесь от иррациональности в знаменателе.

    Решение

    Ранее в статье, посвященной преобразованиям иррациональных выражений с применением свойств корней, мы упоминали, что при любом A и четных n мы можем заменить выражение A n n на | A | на всей области допустимых значений переменных. Следовательно, в нашем случае мы можем записать так: 7 — x x + 1 2 = 7 — x x + 1 . Таким способом мы освободились от иррациональности в знаменателе.

    Ответ: 7 — x x + 1 2 = 7 — x x + 1 .

    Избавление от иррациональности методом умножения на корень

    Если в знаменателе дроби находится выражение вида A и само выражение A не имеет знаков корней, то мы можем освободиться от иррациональности, просто умножив обе части исходной дроби на A . Возможность этого действия определяется тем, что A на области допустимых значений не будет обращаться в 0 . После умножения в знаменателе окажется выражение вида A · A , которое легко избавить от корней: A · A = A 2 = A . Посмотрим, как правильно применять этот метод на практике.

    Условие: даны дроби x 3 и — 1 x 2 + y — 4 . Избавьтесь от иррациональности в их знаменателях.

    Решение

    Выполним умножение первой дроби на корень второй степени из 3 . Получим следующее:

    x 3 = x · 3 3 · 3 = x · 3 3 2 = x · 3 3

    Во втором случае нам надо выполнить умножение на x 2 + y — 4 и преобразовать получившееся выражение в знаменателе:

    — 1 x 2 + y — 4 = — 1 · x 2 + y — 4 x 2 + y — 4 · x 2 + y — 4 = = — x 2 + y — 4 x 2 + y — 4 2 = — x 2 + y — 4 x 2 + y — 4

    Ответ: x 3 = x · 3 3 и — 1 x 2 + y — 4 = — x 2 + y — 4 x 2 + y — 4 .

    Если же в знаменателе исходной дроби имеются выражения вида A n m или A m n (при условии натуральных m и n ), нам нужно выбрать такой множитель, чтобы получившееся выражение можно было преобразовать в A n n · k или A n · k n (при натуральном k ). После этого избавиться от иррациональности будет несложно. Разберем такой пример.

    Условие: даны дроби 7 6 3 5 и x x 2 + 1 4 15 . Избавьтесь от иррациональности в знаменателях.

    Решение

    Нам нужно взять натуральное число, которое можно разделить на пять, при этом оно должно быть больше трех. Чтобы показатель 6 стал равен 5 , нам надо выполнить умножение на 6 2 5 . Следовательно, обе части исходной дроби нам придется умножить на 6 2 5 :

    7 6 3 5 = 7 · 6 2 5 6 3 5 · 6 2 5 = 7 · 6 2 5 6 3 5 · 6 2 = 7 · 6 2 5 6 5 5 = = 7 · 6 2 5 6 = 7 · 36 5 6

    Во втором случае нам потребуется число, большее 15 , которое можно разделить на 4 без остатка. Берем 16 . Чтобы получить такой показатель степени в знаменателе, нам надо взять в качестве множителя x 2 + 1 4 . Уточним, что значение этого выражения не будет 0 ни в каком случае. Вычисляем:

    x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 15 · x 2 + 1 4 = = x · x 2 + 1 4 x 2 + 1 4 16 = x · x 2 + 1 4 x 2 + 1 4 4 4 = x · x 2 + 1 4 x 2 + 1 4

    Ответ: 7 6 3 5 = 7 · 36 5 6 и x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 .

    Избавление от иррациональности методом умножения на сопряженное выражение

    Следующий метод подойдет для тех случаев, когда в знаменателе исходной дроби стоят выражения a + b , a — b , a + b , a — b , a + b , a — b . В таких случаях нам надо взять в качестве множителя сопряженное выражение. Поясним смысл этого понятия.

    Для первого выражения a + b сопряженным будет a — b , для второго a — b – a + b . Для a + b – a — b , для a — b – a + b , для a + b – a — b , а для a — b – a + b . Иначе говоря, сопряженное выражение – это такое выражение, в котором перед вторым слагаемым стоит противоположный знак.

    Давайте рассмотрим, в чем именно заключается данный метод. Допустим, у нас есть произведение вида a — b · a + b . Оно может быть заменено разностью квадратов a — b · a + b = a 2 — b 2 , после чего мы переходим к выражению a − b , лишенному радикалов. Таким образом, мы освободились от иррациональности в знаменателе дроби с помощью умножения на сопряженное выражение. Возьмем пару наглядных примеров.

    Условие: избавьтесь от иррациональности в выражениях 3 7 — 3 и x — 5 — 2 .

    Решение

    В первом случае берем сопряженное выражение, равное 7 + 3 . Теперь производим умножение обеих частей исходной дроби на него:

    3 7 — 3 = 3 · 7 + 3 7 — 3 · 7 + 3 = 3 · 7 + 3 7 2 — 3 2 = = 3 · 7 + 3 7 — 9 = 3 · 7 + 3 — 2 = — 3 · 7 + 3 2

    Во втором случае нам понадобится выражение — 5 + 2 , которое является сопряженным выражению — 5 — 2 . Умножим на него числитель и знаменатель и получим:

    x — 5 — 2 = x · — 5 + 2 — 5 — 2 · — 5 + 2 = = x · — 5 + 2 — 5 2 — 2 2 = x · — 5 + 2 5 — 2 = x · 2 — 5 3

    Возможно также перед умножением выполнить преобразование: если мы вынесем из знаменателя сначала минус, считать будет удобнее:

    x — 5 — 2 = — x 5 + 2 = — x · 5 — 2 5 + 2 · 5 — 2 = = — x · 5 — 2 5 2 — 2 2 = — x · 5 — 2 5 — 2 = — x · 5 — 2 3 = = x · 2 — 5 3

    Ответ: 3 7 — 3 = — 3 · 7 + 3 2 и x — 5 — 2 = x · 2 — 5 3 .

    Важно обратить внимание на то, чтобы выражение, полученное в итоге умножения, не обращалось в 0 ни при каких переменных из области допустимых значений для данного выражения.

    Условие: дана дробь x x + 4 . Преобразуйте ее так, чтобы в знаменателе не было иррациональных выражений.

    Решение

    Начнем с нахождения области допустимых значений переменной x . Она определена условиями x ≥ 0 и x + 4 ≠ 0 . Из них можно сделать вывод, что нужная область представляет собой множество x ≥ 0 .

    Сопряженное знаменателю выражение представляет собой x — 4 . Когда мы можем выполнить умножение на него? Только в том случае, если x — 4 ≠ 0 . На области допустимых значений это будет равносильно условию x≠16. В итоге мы получим следующее:

    x x + 4 = x · x — 4 x + 4 · x — 4 = = x · x — 4 x 2 — 4 2 = x · x — 4 x — 16

    Если x будет равен 16 , то мы получим:

    x x + 4 = 16 16 + 4 = 16 4 + 4 = 2

    Следовательно, x x + 4 = x · x — 4 x — 16 при всех значениях x , принадлежащих области допустимых значений, за исключением 16 . При x = 16 получим x x + 4 = 2 .

    Ответ: x x + 4 = x · x — 4 x — 16 , x ∈ [ 0 , 16 ) ∪ ( 16 , + ∞ ) 2 , x = 16 .

    Преобразование дробей с иррациональностью в знаменателе с использованием формул суммы и разности кубов

    В предыдущем пункте мы выполняли умножение на сопряженные выражения с тем, чтобы потом использовать формулу разности квадратов. Иногда для избавления от иррациональности в знаменателе полезно воспользоваться и другими формулами сокращенного умножения, например, разностью кубов a 3 − b 3 = ( a − b ) · ( a 2 + a · b + b 2 ) . Этой формулой удобно пользоваться, если в знаменателе исходной дроби стоят выражения с корнями третьей степени вида A 3 — B 3 , A 3 2 + A 3 · B 3 + B 3 2 . и т.д. Чтобы применить ее, нам нужно умножить знаменатель дроби на неполный квадрат суммы A 3 2 + A 3 · B 3 + B 3 2 или разность A 3 — B 3 . Точно также можно применить и формулу суммы a 3 + b 3 = ( а ) · ( a 2 − a · b + b 2 ) .

    Условие: преобразуйте дроби 1 7 3 — 2 3 и 3 4 — 2 · x 3 + x 2 3 так, чтобы избавиться от иррациональности в знаменателе.

    Решение

    Для первой дроби нам нужно воспользоваться методом умножения обеих частей на неполный квадрат суммы 7 3 и 2 3 , поскольку потом мы сможем выполнить преобразование с помощью формулы разности кубов:

    1 7 3 — 2 3 = 1 · 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 — 2 3 · 7 3 2 + 7 3 · 2 3 + 2 3 2 = = 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 3 — 2 3 3 = 7 2 3 + 7 · 2 3 + 2 2 3 7 — 2 = = 49 3 + 14 3 + 4 3 5

    Во второй дроби представим знаменатель как 2 2 — 2 · x 3 + x 3 2 . В этом выражении виден неполный квадрат разности 2 и x 3 , значит, мы можем умножить обе части дроби на сумму 2 + x 3 и воспользоваться формулой суммы кубов. Для этого должно быть соблюдено условие 2 + x 3 ≠ 0 , равносильное x 3 ≠ — 2 и x ≠ − 8 :

    3 4 — 2 · x 3 + x 2 3 = 3 2 2 — 2 · x 3 + x 3 2 = = 3 · 2 + x 3 2 2 — 2 · x 3 + x 3 2 · 2 + x 3 = 6 + 3 · x 3 2 3 + x 3 3 = = 6 + 3 · x 3 8 + x

    Подставим в дробь — 8 и найдем значение:

    3 4 — 2 · 8 3 + 8 2 3 = 3 4 — 2 · 2 + 4 = 3 4

    Подведем итоги. При всех x , входящих в область значений исходной дроби (множество R ), за исключением — 8 , мы получим 3 4 — 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x . Если x = 8 , то 3 4 — 2 · x 3 + x 2 3 = 3 4 .

    Ответ: 3 4 — 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x , x ≠ 8 3 4 , x = — 8 .

    Последовательное применение различных способов преобразования

    Часто на практике встречаются более сложные примеры, когда мы не можем освободиться от иррациональности в знаменателе с помощью всего одного метода. Для них нужно последовательно выполнять несколько преобразований или подбирать нестандартные решения. Возьмем одну такую задачу.

    Условие: преобразуйте 5 7 4 — 2 4 , чтобы избавиться от знаков корней в знаменателе.

    Решение

    Выполним умножение обеих частей исходной дроби на сопряженное выражение 7 4 + 2 4 с ненулевым значением. Получим следующее:

    5 7 4 — 2 4 = 5 · 7 4 + 2 4 7 4 — 2 4 · 7 4 + 2 4 = = 5 · 7 4 + 2 4 7 4 2 — 2 4 2 = 5 · 7 4 + 2 4 7 — 2

    А теперь применим тот же способ еще раз:

    5 · 7 4 + 2 4 7 — 2 = 5 · 7 4 + 2 4 · 7 + 2 7 — 2 · 7 + 2 = = 5 · 7 4 + 2 4 · 7 + 2 7 2 — 2 2 = 5 · 7 4 + 7 4 · 7 + 2 7 — 2 = = 5 · 7 4 + 2 4 · 7 + 2 5 = 7 4 + 2 4 · 7 + 2

    Ответ: 5 7 4 — 2 4 = 7 4 + 2 4 · 7 + 2 .

    Источник

    Оцените статью
    Избавляемся от вредителей