Как избавиться от дробей неравенстве

Как решать дробные уравнения?

Итак, друзья, продолжаем осваивать решение основных типов алгебраических уравнений. Мы с вами уже хорошо (надеюсь) знаем, как именно надо решать линейные и квадратные уравнения. Осталось разобрать ещё одним основным типом уравнений — дробными уравнениями.

Иногда их называют более научно и солидно — дробные рациональные уравнения. Или дробно-рациональные уравнения. Это сути не меняет.)

Дробные уравнения — незаменимая вещь во многих других темах математики. Особенно — в текстовых задачах. Но для успешного их решения жизненно необходимо ориентироваться в трёх смежных темах:

1. Дроби и действия с дробями и дробными выражениями.

3. Решение линейных и квадратных уравнений.

Без этих трёх китов браться за решение дробных уравнений слишком уж самонадеянно, я бы сказал. Почему? Да потому, что непонимание, как, скажем, работать с дробями (сокращать, приводить к общему знаменателю и т.д.) автоматически будет приводить к полному провалу и в дробных уравнениях. Намёк понятен?)

Так что тем, у кого проблемы хотя бы по одной из вышеперечисленных тем — настоятельно рекомендую освежить их в памяти, да и по ссылочкам пройтись.

Что такое дробное уравнение? Примеры.

Дробное уравнение, как следует непосредственно из названия, — это уравнение, в котором есть дроби. Обязательно. Причём (важно!) не просто дроби, а дроби, у которых есть икс в знаменателе. Хотя бы в одном.

Например, вот такое уравнение:

И так далее.) Напоминаю, что, если в знаменателях сидят только числа, то такие уравнения к дробным не относятся. Либо это линейные уравнения, либо квадратные.

Это линейное уравнение, хотя тут тоже есть дроби. Почему? Да потому, что знаменатели дробей — четвёрка и пятёрка. Т.е. просто числа. И ни один из знаменателей не содержит иксов.

Или такое уравнение:

Это обычное квадратное уравнение, несмотря на двойку в знаменателе. Опять же, по причине того, что двойка — не икс, и деления на неизвестное в дроби нету.

В общем, вы поняли.

Как решать дробные уравнения? Убираем дроби!

Как это ни странно, дробные уравнения в большинстве своём решаются довольно просто. По чётким и несложным правилам. Каким же именно образом?

Первым делом надо избавиться от дробей! Это ключевой шаг в решении любого дробного уравнения, который должен быть освоен идеально. Ибо после того, как все дроби исчезли, уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы уже с вами знаем, что делать.)

Но… Как же нам избавиться от дробей?! Легко! Применяя всё те же старые добрые тождественные преобразования! В чём же суть?

Вникаем. Нам надо помножить обе части уравнения на одно и то же выражение. Но не на какое попало, а на такое, чтобы все знаменатели посокращались! Одним махом.) Ибо дальше, без знаменателей, жизнь становится гораздо проще и приятнее.)

Это только на конкретном примере показать можно. Итак, решаем первое уравнение из нашего списка:

Первое, что приходит на ум — перенести всё в одну сторону, привести всё к общему знаменателю и т.д. Забудьте, как кошмарный сон! Так делают только в одном случае — при решении дробно-рациональных неравенств методом интервалов. Это отдельная большая тема.

А в уравнениях нам надо сразу умножить обе части на такое выражение, которое нам позволит сократить все знаменатели. И какое же это выражение?

Читайте также:  Как избавиться от пылевого клеща самостоятельно

Давайте его конструировать.) Смотрим ещё раз на уравнение:

Понятно, что в левой части для ликвидации знаменателя нам необходимо умножение на (х+3), а в правой — на 3. Но математика позволяет умножать обе части уравнения только на одно и то же выражение! На разные — не катит. Ничего не поделать, так уж она устроена…)

Значит, нам надо скомбинировать такое выражение, которое одновременно делилось бы как на (х+3), так и на тройку. Причём очень важно — только с помощью умножения! И какое же это выражение? Очевидно, это 3(х+3). То есть, по сути, общий знаменатель обеих дробей.

Итак, для ликвидации всех дробей наше уравнение надо умножать на выражение 3(х+3).

Это самое обычное умножение дробных выражений, но, так уж и быть, расписываю детально:

Прошу обратить внимание: скобки (х+3) я не раскрываю! Прямо так, целиком, их и пишу, как будто бы это одна буква. Ибо наша основная на данный момент задача — дроби убрать. Чего без произведения никак не сделаешь… И зачем же нам тогда париться с раскрытием скобок?!

А вот теперь мы видим, что в левой части сокращается целиком (х+3), а в правой 3. Чего мы и добивались! И теперь с чувством глубокого удовлетворения производим сокращение:

Вот и отлично. Дроби исчезли. После сокращения получилось безобидное линейное уравнение:

А его (надеюсь) уже решит каждый:

Решаем следующий примерчик:

И опять избавляемся от того, что нам не нравится. В данном примере это дробь 20/х. Одна единственная. Для её ликвидации правую часть надо домножить на знаменатель. То есть, просто на х. Но тогда и левую часть тоже надо домножить на х: так уж второе тождественное преобразование требует.

Вот и домножаем! Всю левую часть и всю правую часть:

Напоминаю, что эта вертикальная чёрточка с умножением всего лишь означает, что обе части нашего уравнения мы умножаем на «х».

А вот теперь — снова внимание! Очередные грабли. Заметьте, что при умножении левой части на икс, выражение (9 — х) я взял в скобки! Почему? Потому, что мы умножаем на икс всю левую часть целиком, а не отдельные её кусочки!

Дело всё в том, что частенько после умножения народ записывает левую часть вот так:

Это категорически неверно. Дальше можно уже не решать, да…)

Но у нас всё хорошо, будем дорешивать.

С чистой совестью сокращаем икс справа и получаем уравнение уже безо всяких дробей, в одну строчку.

Вот и отлично. Все дроби исчезли напрочь, теперь можно и скобки раскрыть:

Переносим всё влево и приводим к стандартному виду:

Получили классическое квадратное уравнение. Но минус перед квадратом икса — нехорош. Забыть его проще простого! От него всегда можно избавиться умножением (или делением) уравнения на (-1). Проще говоря, меняем в левой части все знаки на противоположные. А справа как был ноль, так ноль же и останется:

Решаем через дискриминант (или подбираем по теореме Виета) и получаем два корня:

Как вы видите, в первом случае уравнение после преобразований стало линейным, а здесь — квадратным.

А бывает и так, что после ликвидации дробей вообще все иксы сокращаются и остаётся чистая правда. Что-нибудь типа 3=3. Это означает, что икс может быть любым. Какой икс ни возьми — всё равно всё посокращается и останется железное равенство 3=3.

Или наоборот, может получиться какая-нибудь белиберда, типа 3=4. А это будет означать, что корней нет. Какой икс ни возьми — всё сократится и останется бред…

Читайте также:  Как избавиться от обветренных губ за день

Надеюсь, такие сюрпризы вас уже нисколько не удивят.) Если всё же удивят, то прогуляйтесь по ссылочке: Линейные уравнения. Как решать линейные уравнения? А чуть конкретнее — особые случаи при решении линейных уравнений. Эти сюрпризы (полная пропажа иксов после преобразований) — они ко всем видам уравнений относятся. И дробные — не исключение.)

Разумеется, при попытке ликвидации дробей встречаются и неожиданности. И одну из них мы рассмотрим прямо сейчас.

Раскладываем на множители!

Решаем третье уравнение по списку:

А вот тут некоторые могут и зависнуть. На что же такое надо домножить всё уравнение, чтобы за один шаг сократились все знаменатели? Можно, конечно, взять и тупо перемножить все три знаменателя, получить

и домножить на эту конструкцию всё уравнение. Математика не возражает.) Но… Может быть, есть выражение попроще?

Что ж, вскрою тайну: да, всё гораздо проще! Если в совершенстве владеть таким мощным приёмом, как разложение на множители. Привет седьмому классу!)

А попробуем-ка разложить на множители каждый из знаменателей? Ну, с х и х+2 точно ничего не сделать, а вот х 2 +2х вполне себе раскладывается! Выносим один икс за скобку и получаем:

Отлично. Вставим наше разложение в исходное уравнение:

Вот теперь всё и прояснилось.) Теперь уже отчётливо видно, что гораздо проще будет умножать обе части уравнения на х(х+2). Это выражение гораздо короче и прекрасно делится на каждый из знаменателей: и на x, и на (х+2), и само на себя — на х(х+2).

Вот на х(х+2) и умножаем:

И снова расписываю подробно, дабы не запутаться. В левой части я буду использовать скобки: там сумма дробей. В правой части скобки не нужны: там одна дробь. Вот и пишем:

А теперь производим умножение. В левой части большие скобки умножаем на наше выражение х(х+2). Разумеется, по правилу раскрытия скобок, сначала первую дробь, затем — вторую. Ну, а в правой части, по правилу умножения дробей, просто умножаем числитель:

Я уж не стал здесь рисовать единички в знаменателях, несолидно… И, опять же, малые скобки в числителях я не раскрываю! Они нам сейчас для сокращения понадобятся! И да… Откуда появились скобки (х — 3) в числителе первой дроби — думаю, уже не стоит объяснять?)

С удовольствием сокращаем все дроби:

Раскрываем оставшиеся скобки, приводим подобные и собираем всё слева:

И снова получили квадратное уравнение.) Решаем и получаем два корня:

Вот и всё. Это и есть ответ.)

Из этого примера можно сделать важный вывод:

Если знаменатели дробей можно разложить на простые множители — обязательно делаем это! Пригодится при ликвидации дробей. Причём раскладываем всё до упора, используя все возможные способы из алгебры седьмого класса!

Как вы видите, всё просто и логично. Мы меняем исходное уравнение так, чтобы после наших преобразований из примера исчезло всё то, что нам не нравится. Или мешает. В данном случае это — дроби. И точно так же мы будем поступать и со всякими логарифмами, синусами, показателями и прочей жестью.) Мы всегда будем от всего этого избавляться.)

Ну что, порешаем?)

Ответы (как обычно, вразброс):

Последнее задание не решается? Что ж, формулы сокращённого умножения всяко помнить надо, да…)

Всё решилось? Что ж, здорово! Значит, полпути в решении дробных уравнений мы с вами уже преодолели. Эта первая часть пути — избавление от дробей. Осталась вторая. Не менее важная!

Всё просто, но… Пришло время открыть вам горькую правду. Успешное решение дробных уравнений этого урока вовсе не гарантирует успех в решении всех остальных примеров этой темы. Даже очень простых, подобных этим. К сожалению…

Читайте также:  Летучие мыши подмосковья как избавиться

Источник

Дробные рациональные неравенства

Дробные рациональные неравенства – это неравенства, в которых есть хотя бы одна дробь с переменной в знаменателе.

При решении дробных рациональных неравенств используется метод интервалов. Поэтому если алгоритм, приведенный ниже, вызовет у вас затруднения, посмотрите статью по методу интервалов .

Как решать дробные рациональные неравенства:

Алгоритм решения дробно-рациональных неравенств.

Примеры:

Расставьте знаки на интервалах числовой оси. Напомню правила расстановки знаков:

— Определяем знак в самом крайнем правом интервале — берем число с этого интервала и подставляем его в неравенство вместо икса. После этого определяем знаки в скобках и результат перемножения этих знаков;

— Дальше двигаемся влево;

— Переходя через число:

— меняем знак, если скобка с этим числом была в нечетной степени (\(1\), \(3\), \(5\)…)

— не меняем знак, если скобка с этим числом была в четной степени (\(2\), \(4\), \(6\)…)

Примеры:

Выделите нужные промежутки. Если есть отдельно стоящий корень, то отметьте его флажком, чтоб не забыть внести его в ответ (см. пример ниже).

Примеры:

Запишите в ответ выделенные промежутки и корни, отмеченные флажком (если они есть).

Сначала приведем к общему знаменателю дроби из левой части.

Переносим дробь из правой части в левую, меняя знак перед ней.

Вычитаем две дроби с одинаковым знаменателем.

Мы привели неравенство к нужному виду. Теперь решаем по алгоритму.

Сначала вычисляем те значения икса, которые сделают нулем числитель или знаменатель.

Отмечаем их на оси, не забывая «выколоть» иксы от знаменателя и закрасить те, что от числителя.

Определим знак в крайнем правом интервале.
Найдем значение дроби при \(x=4\): \(\frac<(4+2)^2><(4+1) (4-3)^2 >\) – значение дроби положительно. Значит в крайнем правом участке будет \(+\) .

Расставляем знаки на других интервалах.
Обратите внимание, что в \(x=-1\) знак меняется, а в \(3\) и \(-2\) (выделены рамкой) – нет.
Точку \(-2\) отмечаем флажком, чтобы не забыть взять ее в ответ. Все. Нам подойдут интервалы с плюсом и точка \(-2\). Готово.

Ответ: <\(-2\)>\( ∪\) \((-1;3)∪(3;+∞)\)

В этом месте у учеников часто встает вопрос – «а зачем решать так сложно? Почему бы просто не умножить дробное рациональное неравенство на общий знаменатель и сразу сократить все знаменатели, как мы это делаем в дробно-рациональных уравнениях ?» Дело в том, что:

Неравенства нельзя умножать или делить на выражения с переменной, если неизвестен знак этого выражения.

Уравнения без проблем можно умножить/делить хоть на положительное число или выражение, хоть на отрицательное. И мы это постоянно делаем при решении уравнений.

Но в неравенстве — не так! Все дело в том, что при умножении (или делении) на положительное, знак сравнения в неравенстве не меняется, а при умножении (делении) на отрицательное — меняется.

Непонятно, мы же не знаем каким оно (выражение на которое умножали) было– положительным или отрицательным! Действительно, при иксе равном \(1\), значение \((x-3)\) отрицательно, а при иксе равном \(7\) – положительно. Поэтому так преобразовывать нельзя. При этом заметим, что:

Если знак выражения известен (например, одинаков при любом значении икса) — умножать на него неравенство можно.

Например, дробное рациональное неравенство \(\frac<(x-3)^2+5>\) \(≥0\) умножить на \((x-3)^2+5\) можно, потому что это выражение положительно при любом иксе (и значит, после умножения мы оставим тот же знак сравнения).

А вот неравенство \(\frac\) \(≥\) \(\frac<3-x>\) умножить на \((x+5)\) – нельзя, потому что при разных иксах его значение может быть и отрицательным, и положительным.

Источник

Оцените статью
Избавляемся от вредителей