- Сложные выражения с дробями. Порядок действий
- Многоэтажные дроби
- Специфика работы с многоэтажными дробями
- Как избавиться от иррациональности
- Что такое иррациональность в знаменателе дроби
- Как избавиться от иррациональности, когда в знаменателе только один корень
- № 366 (1) Колягин, Алимов 9 класс
- Как избавиться от иррациональности, когда в знаменателе несколько корней
- № 366 (3) Колягин, Алимов 9 класс
- Примеры освобождения от иррациональности в знаменателе
- № 366 (2; 7) Колягин, Алимов 9 класс
- № 557 (5) Мерзляк 9 класс
- Как решать дробные уравнения?
Сложные выражения с дробями. Порядок действий
Теперь, когда мы научились складывать и умножать отдельные дроби, можно рассматривать более сложные конструкции. Например, что, если в одной задаче встречается и сложение, и вычитание, и умножение дробей?
В первую очередь, надо перевести все дроби в неправильные. Затем последовательно выполняем требуемые действия — в том же порядке, как и для обычных чисел. А именно:
- Сначала выполняется возведение в степень — избавьтесь от всех выражений, содержащих показатели;
- Затем — деление и умножение;
- Последним шагом выполняется сложение и вычитание.
Разумеется, если в выражении присутствуют скобки, порядок действий изменяется — все, что стоит внутри скобок, надо считать в первую очередь. И помните о неправильных дробях: выделять целую часть надо лишь тогда, когда все остальные действия уже выполнены.
Задача. Найдите значения выражений:
Переведем все дроби из первого выражения в неправильные, а затем выполним действия:
Теперь найдем значение второго выражения. Тут дробей с целой частью нет, но есть скобки, поэтому сначала выполняем сложение, и лишь затем — деление. Заметим, . Тогда:
Наконец, считаем третий пример. Здесь есть скобки и степень — их лучше считать отдельно. Учитывая, , имеем:
Обратите внимание на последний пример. Чтобы возвести дробь в степень, надо отдельно возвести в эту степень числитель, и отдельно — знаменатель.
Можно решать по-другому. Если вспомнить определение степени, задача сведется к обычному умножению дробей:
Многоэтажные дроби
До сих пор мы рассматривали лишь «чистые» дроби, когда числитель и знаменатель представляют собой обыкновенные числа. Это вполне соответствует определению числовой дроби, данному в самом первом уроке.
Но что, если в числителе или знаменателе разместить более сложный объект? Например, другую числовую дробь? Такие конструкции возникают довольно часто, особенно при работе с длинными выражениями. Вот пара примеров:
Здесь и далее мы будем называть эти дроби . Однако имейте в виду, что общепризнанного названия у них нет, и в разных учебниках могут встречаться другие определения.
Правило работы с многоэтажными дробями всего одно: от них надо немедленно избавляться. Удалить «лишние» этажи довольно просто, если вспомнить, что дробная черта означает стандартную операцию деления. Поэтому любую дробь можно переписать следующим образом:
Пользуясь этим фактом и соблюдая порядок действий, мы легко сведем любую многоэтажную дробь к обычной. Взгляните на примеры:
Задача. Переведите многоэтажные дроби в обычные:
В каждом случае перепишем основную дробь, заменив разделительную черту знаком деления. Также вспомним, что любое целое число представимо в виде дроби со знаменателем 1. Получаем:
В последнем примере перед окончательным умножением дроби были сокращены.
Специфика работы с многоэтажными дробями
В многоэтажных дробях есть одна тонкость, которую всегда надо помнить, иначе можно получить неверный ответ, даже если все вычисления были правильными. Взгляните:
Это выражение можно прочитать по-разному:
- В числителе стоит отдельное число 7, а в знаменателе — дробь 12/5;
- В числителе стоит дробь 7/12, а в знаменателе — отдельное число 5.
Итак, для одной записи получили две совершенно разных интерпретации. Если подсчитать, ответы тоже будут разными:
Чтобы запись всегда читалась однозначно, используйте простое правило: разделяющая черта основной дроби должна быть длиннее, чем черта вложенной. Желательно — в несколько раз.
Если следовать этому правилу, то приведенные выше дроби надо записать так:
Да, возможно, это некрасиво и занимает слишком много места. Зато вы будете считать правильно. Напоследок — пара примеров, где действительно возникают многоэтажные дроби:
Задача. Найдите значения выражений:
Итак, работаем с первым примером. Переведем все дроби в неправильные, а затем выполним операции сложения и деления:
Аналогично поступим со вторым примером. Переведем все дроби в неправильные и выполним требуемые операции. Чтобы не утомлять читателя, я опущу некоторые очевидные выкладки. Имеем:
Благодаря тому, что в числителе и знаменателе основных дробей стоят суммы, правило записи многоэтажных дробей соблюдается автоматически. Кроме того, в последнем примере мы намеренно оставили в форме дроби, чтобы выполнить деление.
Также отмечу, что в обоих примерах дробная черта фактически заменяет скобки: первым делом мы находили сумму, и лишь затем — частное.
Кто-то скажет, что переход к неправильным дробям во втором примере был явно избыточным. Возможно, так оно и есть. Но этим мы страхуем себя от ошибок, ведь в следующий раз пример может оказаться намного сложнее. Выбирайте сами, что важнее: скорость или надежность.
Источник
Как избавиться от иррациональности
Иррациональностью в знаменателе (нижней части дроби) называют наличие корней в знаменателе.
Что такое иррациональность в знаменателе дроби
Рассмотрим на примерах ниже, в каких дробях в знаменателе есть иррациональность, а в каких её нет.
-
√ 6 2 в знаменателе нет корней, значит иррациональности нет ;
-
5 √ 6 в знаменателе есть
корень « √ 6 » — иррациональность в знаменателе есть . -
4 √ 7 − √ 3 в знаменателе есть корни « √ 7 » и « √ 3 » — иррациональность есть .
-
a + b √ c − 3 в знаменателе есть
корень « √ c − 3 » — иррациональность в знаменателе есть .
Избавиться от иррациональности в знаменателе означает убрать все корни из знаменателя.
Возникает логичный вопрос, как это можно сделать?
Чаще всего встречаются два вида примеров. Рассмотрим решение обоих видов.
Как избавиться от иррациональности, когда в знаменателе только один корень
На помощь приходит основное свойство дроби. Вспомним, что оно позволяет умножить и разделить дробь на одно и то же число, чтобы в конечном итоге дробь не изменилась.
Чтобы избавиться от иррациональности в знаменателе с одним корнем, нужно умножить и числитель, и знаменатель на корень из знаменателя.
По традиции разберемся на практике.
№ 366 (1) Колягин, Алимов 9 класс
Исключить иррациональность из знаменателя:
Зададим себе вопрос, на что нужно умножить « √ 5 » в знаменателе, чтобы избавиться от корня.
Ответ: на « √ 5 ». В самом деле, если квадратный корень умножить сам на себя получится число под корнем. Проверим.
√ 5 · √ 5 = √ 5 · 5 = √ 5 2 = 5
Используем основное свойство дроби, умножим и числитель, и знаменатель на « √ 5 », чтобы избавиться от корня в знаменателе.
3 |
√ 5 |
=
3 · √ 5 |
√ 5 · √ 5 |
=
3 · √ 5 |
√ 5 · 5 |
=
3 · √ 5 |
√ 5 2 |
=
=
3 · √ 5 |
5 |
Как избавиться от иррациональности, когда в знаменателе несколько корней
Чтобы избавиться от иррациональности в знаменателе c несколькими корнями, нужно использовать формулы сокращённого умножения.
Разберемся по традиции на примере.
№ 366 (3) Колягин, Алимов 9 класс
Исключить иррациональность из знаменателя:
На что нужно умножить знаменатель « 2 − √ 3 » , чтобы убрать из него корень?
Теперь недостаточно умножить знаменатель на « √ 3 » , ведь в таком случае все равно остается квадратный корень.
(2 − √ 3 ) · √ 3 = 2 √ 3 − √ 3 · √ 3 =
Мы видим, что корень никуда не исчез. Нужно искать другие варианты решения.
Вспомним формулу сокращенного умножения «Разность квадратов».
Формула разности квадратов также работает в обратную сторону.
Представим, что « 2 − √ 3 » — это часть формулы.
Логично предположить, что в формуле « a » — это « 2 », « b » — « √ 3 ». Подставим вместо знаков « ? » числа.
(a + b)(a − b) = a 2 − b 2
(2 + √ 3 )(2 − √ 3 ) = 2 2 − √ 3 2 = 4 − 3 = 1
То есть, чтобы избавиться от иррациональности в дроби требуется умножить знаменатель « 2 − √ 3 »
на « 2 + √ 3 » и через формулу «Разность квадратов» убрать квадратные корни.
Не забываем, что по основному свойству дроби мы обязаны также умножить числитель на « 2 + √ 3 ».
1 |
2 − √ 3 |
=
1 · (2 + √ 3 ) |
(2 − √ 3 ) · ( 2 + √ 3 ) |
=
=
2 + √ 3 |
2 2 − √ 3 2 |
=
2 + √ 3 |
4 − 3 |
=
2 + √ 3 |
1 |
= 2 + √ 3
Примеры освобождения от иррациональности в знаменателе
№ 366 (2; 7) Колягин, Алимов 9 класс
Исключить иррациональность из знаменателя:
2)
2 |
√ 6 |
2 |
√ 6 |
=
2 · √ 6 |
√ 6 · √ 6 |
=
2 · √ 6 |
√ 6 · 6 |
=
2· √ 6 |
√ 6 2 |
=
=
2 · √ 6 |
6 |
Рассмотрим пример, когда в знаменателе несколько корней.
7)
√ 5 − √ 7 |
√ 5 + √ 7 |
=
Используем формулу сокращенного умножения «Разность квадратов».
Умножим и числитель, и знаменатель на «( √ 5 − √ 7 )», чтобы использовать формулу сокращённого умножения в знаменателе и избавиться от корней.
√ 5 − √ 7 |
√ 5 + √ 7 |
=
( √ 5 − √ 7 ) ( √ 5 − √ 7 ) |
( √ 5 + √ 7 ) ( √ 5 − √ 7 ) |
=
=
( √ 5 − √ 7 ) 2 |
√ 5 2 − √ 7 2 |
= …
Используем в числителе (наверху в дроби) формулу «Квадрат разности».
(a − b) 2 = a 2 − 2ab + b 2
√ 5 − √ 7 |
√ 5 + √ 7 |
=
( √ 5 − √ 7 ) ( √ 5 − √ 7 ) |
( √ 5 + √ 7 ) ( √ 5 − √ 7 ) |
=
=
( √ 5 − √ 7 ) 2 |
√ 5 2 − √ 7 2 |
=
=
( √ 5 ) 2 − 2 · √ 5 · √ 7 + ( √ 7 ) 2 |
√ 5 2 − √ 7 2 |
=
=
5 − 2 √ 5 · 7 + 7 |
5 − 7 |
=
12 − 2 √ 35 |
− 2 |
=
= −
12 − 2 √ 35 |
2 |
= …
√ 5 − √ 7 |
√ 5 + √ 7 |
=
( √ 5 − √ 7 ) ( √ 5 − √ 7 ) |
( √ 5 + √ 7 ) ( √ 5 − √ 7 ) |
=
=
( √ 5 − √ 7 ) 2 |
√ 5 2 − √ 7 2 |
=
=
( √ 5 ) 2 − 2 · √ 5 · √ 7 + ( √ 7 ) 2 |
√ 5 2 − √ 7 2 |
=
=
5 − 2 √ 5 · 7 + 7 |
5 − 7 |
=
12 − 2 √ 35 |
− 2 |
=
= −
12 − 2 √ 35 |
2 |
= −
2 · (6 − √ 35 ) |
2 |
=
= −
2 (6 − √ 35 ) |
2 |
=
= − (6 − √ 35 ) = −6 + √ 35
№ 557 (5) Мерзляк 9 класс
Освободитесь от иррациональности в знаменателе дроби:
5)
1 |
√ a − √ b |
Используем формулу сокращенного умножения «Разность квадратов».
Умножим и числитель, и знаменатель на « ( √ a + √ b ) », чтобы использовать формулу «Разность квадратов» в знаменателе и освободиться от корней.
Источник
Как решать дробные уравнения?
Итак, друзья, продолжаем осваивать решение основных типов алгебраических уравнений. Мы с вами уже хорошо (надеюсь) знаем, как именно надо решать линейные и квадратные уравнения. Осталось разобрать ещё одним основным типом уравнений — дробными уравнениями.
Иногда их называют более научно и солидно — дробные рациональные уравнения. Или дробно-рациональные уравнения. Это сути не меняет.)
Дробные уравнения — незаменимая вещь во многих других темах математики. Особенно — в текстовых задачах. Но для успешного их решения жизненно необходимо ориентироваться в трёх смежных темах:
1. Дроби и действия с дробями и дробными выражениями.
3. Решение линейных и квадратных уравнений.
Без этих трёх китов браться за решение дробных уравнений слишком уж самонадеянно, я бы сказал. Почему? Да потому, что непонимание, как, скажем, работать с дробями (сокращать, приводить к общему знаменателю и т.д.) автоматически будет приводить к полному провалу и в дробных уравнениях. Намёк понятен?)
Так что тем, у кого проблемы хотя бы по одной из вышеперечисленных тем — настоятельно рекомендую освежить их в памяти, да и по ссылочкам пройтись.
Что такое дробное уравнение? Примеры.
Дробное уравнение, как следует непосредственно из названия, — это уравнение, в котором есть дроби. Обязательно. Причём (важно!) не просто дроби, а дроби, у которых есть икс в знаменателе. Хотя бы в одном.
Например, вот такое уравнение:
И так далее.) Напоминаю, что, если в знаменателях сидят только числа, то такие уравнения к дробным не относятся. Либо это линейные уравнения, либо квадратные.
Это линейное уравнение, хотя тут тоже есть дроби. Почему? Да потому, что знаменатели дробей — четвёрка и пятёрка. Т.е. просто числа. И ни один из знаменателей не содержит иксов.
Или такое уравнение:
Это обычное квадратное уравнение, несмотря на двойку в знаменателе. Опять же, по причине того, что двойка — не икс, и деления на неизвестное в дроби нету.
В общем, вы поняли.
Как решать дробные уравнения? Убираем дроби!
Как это ни странно, дробные уравнения в большинстве своём решаются довольно просто. По чётким и несложным правилам. Каким же именно образом?
Первым делом надо избавиться от дробей! Это ключевой шаг в решении любого дробного уравнения, который должен быть освоен идеально. Ибо после того, как все дроби исчезли, уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы уже с вами знаем, что делать.)
Но… Как же нам избавиться от дробей?! Легко! Применяя всё те же старые добрые тождественные преобразования! В чём же суть?
Вникаем. Нам надо помножить обе части уравнения на одно и то же выражение. Но не на какое попало, а на такое, чтобы все знаменатели посокращались! Одним махом.) Ибо дальше, без знаменателей, жизнь становится гораздо проще и приятнее.)
Это только на конкретном примере показать можно. Итак, решаем первое уравнение из нашего списка:
Первое, что приходит на ум — перенести всё в одну сторону, привести всё к общему знаменателю и т.д. Забудьте, как кошмарный сон! Так делают только в одном случае — при решении дробно-рациональных неравенств методом интервалов. Это отдельная большая тема.
А в уравнениях нам надо сразу умножить обе части на такое выражение, которое нам позволит сократить все знаменатели. И какое же это выражение?
Давайте его конструировать.) Смотрим ещё раз на уравнение:
Понятно, что в левой части для ликвидации знаменателя нам необходимо умножение на (х+3), а в правой — на 3. Но математика позволяет умножать обе части уравнения только на одно и то же выражение! На разные — не катит. Ничего не поделать, так уж она устроена…)
Значит, нам надо скомбинировать такое выражение, которое одновременно делилось бы как на (х+3), так и на тройку. Причём очень важно — только с помощью умножения! И какое же это выражение? Очевидно, это 3(х+3). То есть, по сути, общий знаменатель обеих дробей.
Итак, для ликвидации всех дробей наше уравнение надо умножать на выражение 3(х+3).
Это самое обычное умножение дробных выражений, но, так уж и быть, расписываю детально:
Прошу обратить внимание: скобки (х+3) я не раскрываю! Прямо так, целиком, их и пишу, как будто бы это одна буква. Ибо наша основная на данный момент задача — дроби убрать. Чего без произведения никак не сделаешь… И зачем же нам тогда париться с раскрытием скобок?!
А вот теперь мы видим, что в левой части сокращается целиком (х+3), а в правой 3. Чего мы и добивались! И теперь с чувством глубокого удовлетворения производим сокращение:
Вот и отлично. Дроби исчезли. После сокращения получилось безобидное линейное уравнение:
А его (надеюсь) уже решит каждый:
Решаем следующий примерчик:
И опять избавляемся от того, что нам не нравится. В данном примере это дробь 20/х. Одна единственная. Для её ликвидации правую часть надо домножить на знаменатель. То есть, просто на х. Но тогда и левую часть тоже надо домножить на х: так уж второе тождественное преобразование требует.
Вот и домножаем! Всю левую часть и всю правую часть:
Напоминаю, что эта вертикальная чёрточка с умножением всего лишь означает, что обе части нашего уравнения мы умножаем на «х».
А вот теперь — снова внимание! Очередные грабли. Заметьте, что при умножении левой части на икс, выражение (9 — х) я взял в скобки! Почему? Потому, что мы умножаем на икс всю левую часть целиком, а не отдельные её кусочки!
Дело всё в том, что частенько после умножения народ записывает левую часть вот так:
Это категорически неверно. Дальше можно уже не решать, да…)
Но у нас всё хорошо, будем дорешивать.
С чистой совестью сокращаем икс справа и получаем уравнение уже безо всяких дробей, в одну строчку.
Вот и отлично. Все дроби исчезли напрочь, теперь можно и скобки раскрыть:
Переносим всё влево и приводим к стандартному виду:
Получили классическое квадратное уравнение. Но минус перед квадратом икса — нехорош. Забыть его проще простого! От него всегда можно избавиться умножением (или делением) уравнения на (-1). Проще говоря, меняем в левой части все знаки на противоположные. А справа как был ноль, так ноль же и останется:
Решаем через дискриминант (или подбираем по теореме Виета) и получаем два корня:
Как вы видите, в первом случае уравнение после преобразований стало линейным, а здесь — квадратным.
А бывает и так, что после ликвидации дробей вообще все иксы сокращаются и остаётся чистая правда. Что-нибудь типа 3=3. Это означает, что икс может быть любым. Какой икс ни возьми — всё равно всё посокращается и останется железное равенство 3=3.
Или наоборот, может получиться какая-нибудь белиберда, типа 3=4. А это будет означать, что корней нет. Какой икс ни возьми — всё сократится и останется бред…
Надеюсь, такие сюрпризы вас уже нисколько не удивят.) Если всё же удивят, то прогуляйтесь по ссылочке: Линейные уравнения. Как решать линейные уравнения? А чуть конкретнее — особые случаи при решении линейных уравнений. Эти сюрпризы (полная пропажа иксов после преобразований) — они ко всем видам уравнений относятся. И дробные — не исключение.)
Разумеется, при попытке ликвидации дробей встречаются и неожиданности. И одну из них мы рассмотрим прямо сейчас.
Раскладываем на множители!
Решаем третье уравнение по списку:
А вот тут некоторые могут и зависнуть. На что же такое надо домножить всё уравнение, чтобы за один шаг сократились все знаменатели? Можно, конечно, взять и тупо перемножить все три знаменателя, получить
и домножить на эту конструкцию всё уравнение. Математика не возражает.) Но… Может быть, есть выражение попроще?
Что ж, вскрою тайну: да, всё гораздо проще! Если в совершенстве владеть таким мощным приёмом, как разложение на множители. Привет седьмому классу!)
А попробуем-ка разложить на множители каждый из знаменателей? Ну, с х и х+2 точно ничего не сделать, а вот х 2 +2х вполне себе раскладывается! Выносим один икс за скобку и получаем:
Отлично. Вставим наше разложение в исходное уравнение:
Вот теперь всё и прояснилось.) Теперь уже отчётливо видно, что гораздо проще будет умножать обе части уравнения на х(х+2). Это выражение гораздо короче и прекрасно делится на каждый из знаменателей: и на x, и на (х+2), и само на себя — на х(х+2).
Вот на х(х+2) и умножаем:
И снова расписываю подробно, дабы не запутаться. В левой части я буду использовать скобки: там сумма дробей. В правой части скобки не нужны: там одна дробь. Вот и пишем:
А теперь производим умножение. В левой части большие скобки умножаем на наше выражение х(х+2). Разумеется, по правилу раскрытия скобок, сначала первую дробь, затем — вторую. Ну, а в правой части, по правилу умножения дробей, просто умножаем числитель:
Я уж не стал здесь рисовать единички в знаменателях, несолидно… И, опять же, малые скобки в числителях я не раскрываю! Они нам сейчас для сокращения понадобятся! И да… Откуда появились скобки (х — 3) в числителе первой дроби — думаю, уже не стоит объяснять?)
С удовольствием сокращаем все дроби:
Раскрываем оставшиеся скобки, приводим подобные и собираем всё слева:
И снова получили квадратное уравнение.) Решаем и получаем два корня:
Вот и всё. Это и есть ответ.)
Из этого примера можно сделать важный вывод:
Если знаменатели дробей можно разложить на простые множители — обязательно делаем это! Пригодится при ликвидации дробей. Причём раскладываем всё до упора, используя все возможные способы из алгебры седьмого класса!
Как вы видите, всё просто и логично. Мы меняем исходное уравнение так, чтобы после наших преобразований из примера исчезло всё то, что нам не нравится. Или мешает. В данном случае это — дроби. И точно так же мы будем поступать и со всякими логарифмами, синусами, показателями и прочей жестью.) Мы всегда будем от всего этого избавляться.)
Ну что, порешаем?)
Ответы (как обычно, вразброс):
Последнее задание не решается? Что ж, формулы сокращённого умножения всяко помнить надо, да…)
Всё решилось? Что ж, здорово! Значит, полпути в решении дробных уравнений мы с вами уже преодолели. Эта первая часть пути — избавление от дробей. Осталась вторая. Не менее важная!
Всё просто, но… Пришло время открыть вам горькую правду. Успешное решение дробных уравнений этого урока вовсе не гарантирует успех в решении всех остальных примеров этой темы. Даже очень простых, подобных этим. К сожалению…
Источник