- Как избавиться от иррациональности
- Что такое иррациональность в знаменателе дроби
- Как избавиться от иррациональности, когда в знаменателе только один корень
- № 366 (1) Колягин, Алимов 9 класс
- Как избавиться от иррациональности, когда в знаменателе несколько корней
- № 366 (3) Колягин, Алимов 9 класс
- Примеры освобождения от иррациональности в знаменателе
- № 366 (2; 7) Колягин, Алимов 9 класс
- № 557 (5) Мерзляк 9 класс
- Иррациональность дроби — как правильно избавиться от знака корня в знаменателе?
- Определение иррациональности
- Правила избавления от радикала
- Использование средств преобразования
- Как освободиться от иррациональности в знаменателе: способы, примеры, решения
- Понятие освобождения от иррациональности в знаменателе
- Основные действия для избавления от иррациональности в знаменателе дроби
- Как преобразовать выражение в знаменателе дроби
- Избавление от иррациональности методом умножения на корень
- Избавление от иррациональности методом умножения на сопряженное выражение
- Преобразование дробей с иррациональностью в знаменателе с использованием формул суммы и разности кубов
- Последовательное применение различных способов преобразования
Как избавиться от иррациональности
Иррациональностью в знаменателе (нижней части дроби) называют наличие корней в знаменателе.
Что такое иррациональность в знаменателе дроби
Рассмотрим на примерах ниже, в каких дробях в знаменателе есть иррациональность, а в каких её нет.
-
√ 6 2 в знаменателе нет корней, значит иррациональности нет ;
-
5 √ 6 в знаменателе есть
корень « √ 6 » — иррациональность в знаменателе есть . -
4 √ 7 − √ 3 в знаменателе есть корни « √ 7 » и « √ 3 » — иррациональность есть .
-
a + b √ c − 3 в знаменателе есть
корень « √ c − 3 » — иррациональность в знаменателе есть .
Избавиться от иррациональности в знаменателе означает убрать все корни из знаменателя.
Возникает логичный вопрос, как это можно сделать?
Чаще всего встречаются два вида примеров. Рассмотрим решение обоих видов.
Как избавиться от иррациональности, когда в знаменателе только один корень
На помощь приходит основное свойство дроби. Вспомним, что оно позволяет умножить и разделить дробь на одно и то же число, чтобы в конечном итоге дробь не изменилась.
Чтобы избавиться от иррациональности в знаменателе с одним корнем, нужно умножить и числитель, и знаменатель на корень из знаменателя.
По традиции разберемся на практике.
№ 366 (1) Колягин, Алимов 9 класс
Исключить иррациональность из знаменателя:
Зададим себе вопрос, на что нужно умножить « √ 5 » в знаменателе, чтобы избавиться от корня.
Ответ: на « √ 5 ». В самом деле, если квадратный корень умножить сам на себя получится число под корнем. Проверим.
√ 5 · √ 5 = √ 5 · 5 = √ 5 2 = 5
Используем основное свойство дроби, умножим и числитель, и знаменатель на « √ 5 », чтобы избавиться от корня в знаменателе.
3 |
√ 5 |
=
3 · √ 5 |
√ 5 · √ 5 |
=
3 · √ 5 |
√ 5 · 5 |
=
3 · √ 5 |
√ 5 2 |
=
=
3 · √ 5 |
5 |
Как избавиться от иррациональности, когда в знаменателе несколько корней
Чтобы избавиться от иррациональности в знаменателе c несколькими корнями, нужно использовать формулы сокращённого умножения.
Разберемся по традиции на примере.
№ 366 (3) Колягин, Алимов 9 класс
Исключить иррациональность из знаменателя:
На что нужно умножить знаменатель « 2 − √ 3 » , чтобы убрать из него корень?
Теперь недостаточно умножить знаменатель на « √ 3 » , ведь в таком случае все равно остается квадратный корень.
(2 − √ 3 ) · √ 3 = 2 √ 3 − √ 3 · √ 3 =
Мы видим, что корень никуда не исчез. Нужно искать другие варианты решения.
Вспомним формулу сокращенного умножения «Разность квадратов».
Формула разности квадратов также работает в обратную сторону.
Представим, что « 2 − √ 3 » — это часть формулы.
Логично предположить, что в формуле « a » — это « 2 », « b » — « √ 3 ». Подставим вместо знаков « ? » числа.
(a + b)(a − b) = a 2 − b 2
(2 + √ 3 )(2 − √ 3 ) = 2 2 − √ 3 2 = 4 − 3 = 1
То есть, чтобы избавиться от иррациональности в дроби требуется умножить знаменатель « 2 − √ 3 »
на « 2 + √ 3 » и через формулу «Разность квадратов» убрать квадратные корни.
Не забываем, что по основному свойству дроби мы обязаны также умножить числитель на « 2 + √ 3 ».
1 |
2 − √ 3 |
=
1 · (2 + √ 3 ) |
(2 − √ 3 ) · ( 2 + √ 3 ) |
=
=
2 + √ 3 |
2 2 − √ 3 2 |
=
2 + √ 3 |
4 − 3 |
=
2 + √ 3 |
1 |
= 2 + √ 3
Примеры освобождения от иррациональности в знаменателе
№ 366 (2; 7) Колягин, Алимов 9 класс
Исключить иррациональность из знаменателя:
2)
2 |
√ 6 |
2 |
√ 6 |
=
2 · √ 6 |
√ 6 · √ 6 |
=
2 · √ 6 |
√ 6 · 6 |
=
2· √ 6 |
√ 6 2 |
=
=
2 · √ 6 |
6 |
Рассмотрим пример, когда в знаменателе несколько корней.
7)
√ 5 − √ 7 |
√ 5 + √ 7 |
=
Используем формулу сокращенного умножения «Разность квадратов».
Умножим и числитель, и знаменатель на «( √ 5 − √ 7 )», чтобы использовать формулу сокращённого умножения в знаменателе и избавиться от корней.
√ 5 − √ 7 |
√ 5 + √ 7 |
=
( √ 5 − √ 7 ) ( √ 5 − √ 7 ) |
( √ 5 + √ 7 ) ( √ 5 − √ 7 ) |
=
=
( √ 5 − √ 7 ) 2 |
√ 5 2 − √ 7 2 |
= …
Используем в числителе (наверху в дроби) формулу «Квадрат разности».
(a − b) 2 = a 2 − 2ab + b 2
√ 5 − √ 7 |
√ 5 + √ 7 |
=
( √ 5 − √ 7 ) ( √ 5 − √ 7 ) |
( √ 5 + √ 7 ) ( √ 5 − √ 7 ) |
=
=
( √ 5 − √ 7 ) 2 |
√ 5 2 − √ 7 2 |
=
=
( √ 5 ) 2 − 2 · √ 5 · √ 7 + ( √ 7 ) 2 |
√ 5 2 − √ 7 2 |
=
=
5 − 2 √ 5 · 7 + 7 |
5 − 7 |
=
12 − 2 √ 35 |
− 2 |
=
= −
12 − 2 √ 35 |
2 |
= …
√ 5 − √ 7 |
√ 5 + √ 7 |
=
( √ 5 − √ 7 ) ( √ 5 − √ 7 ) |
( √ 5 + √ 7 ) ( √ 5 − √ 7 ) |
=
=
( √ 5 − √ 7 ) 2 |
√ 5 2 − √ 7 2 |
=
=
( √ 5 ) 2 − 2 · √ 5 · √ 7 + ( √ 7 ) 2 |
√ 5 2 − √ 7 2 |
=
=
5 − 2 √ 5 · 7 + 7 |
5 − 7 |
=
12 − 2 √ 35 |
− 2 |
=
= −
12 − 2 √ 35 |
2 |
= −
2 · (6 − √ 35 ) |
2 |
=
= −
2 (6 − √ 35 ) |
2 |
=
= − (6 − √ 35 ) = −6 + √ 35
№ 557 (5) Мерзляк 9 класс
Освободитесь от иррациональности в знаменателе дроби:
5)
1 |
√ a − √ b |
Используем формулу сокращенного умножения «Разность квадратов».
Умножим и числитель, и знаменатель на « ( √ a + √ b ) », чтобы использовать формулу «Разность квадратов» в знаменателе и освободиться от корней.
Источник
Иррациональность дроби — как правильно избавиться от знака корня в знаменателе?
Выполняя преобразование выражений с радикалами, важно знать, как заменить дробь или как избавиться от иррациональности в знаменателе. Математическое правило, которое предполагает освобождение от радикала, основано на действиях с сопряженными выражениями. Для правильного выполнения действий с иррациональными дробями следует знать понятие рационального числа.
Определение иррациональности
Часто в задачах по математике можно встретить примеры, которые содержат иррациональность. Если условие направлено на избавление от нее, значит, нужно выполнить математические действия с рациональными числами. Иррациональны дроби, нижняя часть которых содержит подкоренное выражение.
Присутствие квадратного корня в математическом примере следует исключить, согласно правилу, требующему преобразования в рациональное число радикала. В результате действий он будет в числителе. Преобразованный пример, содержащий иррациональность, не теряет своего исходного значения.
Правила избавления от радикала
Придерживаясь общего правила замены подкоренной части тождественно равным выражением, можно освободиться от иррациональности в знаменателе дроби. Достаточно выполнить несложное действие умножения дроби на выражение, которое содержит знак радикала и сопряжено с нижней частью. Полученная в результате дробь не должна содержать подкоренной части.
Общее правило позволяет извлечь из знаменателя квадратный корень. Аналогично можно решать примеры, вычисляя радикал любой степени. Облегчить задачу поможет специальный онлайн-калькулятор. Рациональное число достаточно представить в виде произведения АВ, если это значение не имеет знака радикала. При этом А и В сопряжены между собой.
Например, чтобы представить корень кубический из дроби с числами 1 и 3 в верхней и нижней части, нужно выполнить следующие действия:
Для решения подобных примеров иногда нужно домножить 2 члена дробного выражения на разность между корнями, когда делитель представлен в виде суммы.
Если он выражен как разность составляющих, то следует умножить дробь на радикал из суммы аналогичных чисел. В примерах, которые содержат радикалы, имеющие различные показатели, вначале избавляются от одного корня, а затем от другого.
Использование средств преобразования
Способ приведения иррационального примера к рациональному виду зависит от нижней части с радикалом. Он может включать несколько подкоренных выражений. Если решение алгебраической задачи требует уничтожить иррациональность, тогда нужно освободить выражение от иррациональности в знаменателе. Используемый способ зависит от вида выражения, представляющего собой дробь, нижняя часть которой имеет:
- сумму или разницу квадратных корней;
- радикал 2-й степени;
- разницу либо сумму радикалов 3-й степени;
- иррациональное значение в виде корня n-й степени.
В последнем случае необходимо для избавления знаменателя дроби от иррациональности подобрать множитель, позволяющий извлечь целый корень. Подкоренное выражение, представленное как число в k-й степени, нужно привести к рациональному виду. Учитывая, что n>k, число под корнем возводят в степень n-k. При этом обе дробные части умножают на сопряженное выражение.
Пользуясь правилом преобразования выражений с радикалом, следует помнить о том, что нужно обязательно получить рациональное число. Приводить к таком виду можно разные примеры с корнями. Искомое число дают 2 корня, взятые в виде суммы и разности при умножении на сопряженное выражение с противоположным знаком.
Результат можно представить аналогичным способом, если числитель и знаменатель содержат не 2 корня, а сумму или разность числа и радикала. Зная, как избавляться от иррациональности в знаменателе дроби, на его вид нужно обратить внимание в первую очередь. Это позволит правильно упростить выражение и убрать корень.
Более сложные примеры могут потребовать возведения в степень иррационального знаменателя дроби. Замену дроби с иррациональным числителем либо знаменателем производят на тождественное ей дробное выражение. Оно содержит рациональный числитель или знаменатель, а действие является уничтожением иррациональности.
Для избавления знаменателя дроби от подкоренной части применяют формулы сокращенного умножения, или ФСУ. Умножая разность корней на их сумму, можно получить разность квадратов радикалов, которая будет рациональным числом.
Источник
Как освободиться от иррациональности в знаменателе: способы, примеры, решения
При изучении преобразований иррационального выражения очень важным является вопрос о том, как освободиться от иррациональности в знаменателе дроби. Целью этой статьи является объяснение этого действия на конкретных примерах задач. В первом пункте мы рассмотрим основные правила данного преобразования, а во втором – характерные примеры с подробными пояснениями.
Понятие освобождения от иррациональности в знаменателе
Начнем с пояснения, в чем вообще заключается смысл такого преобразования. Для этого вспомним следующие положения.
Об иррациональности в знаменателе дроби можно говорить в том случае, если там присутствует радикал, он же знак корня. Числа, которые записаны при помощи такого знака, часто относятся к числу иррациональных. Примерами могут быть 1 2 , — 2 x + 3 , x + y x — 2 · x · y + 1 , 11 7 — 5 . К дробям с иррациональными знаменателями также относятся те, что имеют там знаки корней различной степени (квадратный, кубический и т.д.), например, 3 4 3 , 1 x + x · y 4 + y . Избавляться от иррациональности следует для упрощения выражения и облегчения дальнейших вычислений. Сформулируем основное определение:
Освободиться от иррациональности в знаменателе дроби – значит преобразовать ее, заменив на тождественно равную дробь, в знаменателе которой не содержится корней и степеней.
Такое действие может называться освобождением или избавлением от иррациональности, смысл при этом остается тем же. Так, переход от 1 2 к 2 2 , т.е. к дроби с равным значением без знака корня в знаменателе и будет нужным нам действием. Приведем еще один пример: у нас есть дробь x x — y . Проведем необходимые преобразования и получим тождественно равную ей дробь x · x + y x — y , освободившись от иррациональности в знаменателе.
После формулировки определения мы можем переходить непосредственно к изучению последовательности действий, которые нужно выполнить для такого преобразования.
Основные действия для избавления от иррациональности в знаменателе дроби
Для освобождения от корней нужно провести два последовательных преобразования дроби: умножить обе части дроби на число, отличное от нуля, а затем преобразовать выражение, получившееся в знаменателе. Рассмотрим основные случаи.
В наиболее простом случае можно обойтись преобразованием знаменателя. Например, мы можем взять дробь со знаменателем, равным корню из 9 . Вычислив 9 , мы запишем в знаменателе 3 и избавимся таким образом от иррациональности.
Однако гораздо чаще приходится предварительно умножать числитель и знаменатель на такое число, которое потом позволит привести знаменатель к нужному виду (без корней). Так, если мы выполним умножение 1 x + 1 на x + 1 , мы получим дробь x + 1 x + 1 · x + 1 и сможем заменить выражение в ее знаменателе на x + 1 . Так мы преобразовали 1 x + 1 в x + 1 x + 1 , избавившись от иррациональности.
Иногда преобразования, которые нужно выполнить, бывают довольно специфическими. Разберем несколько наглядных примеров.
Как преобразовать выражение в знаменателе дроби
Как мы уже говорили, проще всего выполнить преобразование знаменателя.
Условие: освободите дробь 1 2 · 18 + 50 от иррациональности в знаменателе.
Решение
Для начала раскроем скобки и получим выражение 1 2 · 18 + 2 · 50 . Используя основные свойства корней, перейдем к выражению 1 2 · 18 + 2 · 50 . Вычисляем значения обоих выражений под корнями и получаем 1 36 + 100 . Здесь уже можно извлечь корни. В итоге у нас получилась дробь 1 6 + 10 , равная 1 16 . На этом преобразования можно закончить.
Запишем ход всего решения без комментариев:
1 2 · 18 + 50 = 1 2 · 18 + 2 · 50 = = 1 2 · 18 + 2 · 50 = 1 36 + 100 = 1 6 + 10 = 1 16
Ответ: 1 2 · 18 + 50 = 1 16 .
Условие: дана дробь 7 — x ( x + 1 ) 2 . Избавьтесь от иррациональности в знаменателе.
Решение
Ранее в статье, посвященной преобразованиям иррациональных выражений с применением свойств корней, мы упоминали, что при любом A и четных n мы можем заменить выражение A n n на | A | на всей области допустимых значений переменных. Следовательно, в нашем случае мы можем записать так: 7 — x x + 1 2 = 7 — x x + 1 . Таким способом мы освободились от иррациональности в знаменателе.
Ответ: 7 — x x + 1 2 = 7 — x x + 1 .
Избавление от иррациональности методом умножения на корень
Если в знаменателе дроби находится выражение вида A и само выражение A не имеет знаков корней, то мы можем освободиться от иррациональности, просто умножив обе части исходной дроби на A . Возможность этого действия определяется тем, что A на области допустимых значений не будет обращаться в 0 . После умножения в знаменателе окажется выражение вида A · A , которое легко избавить от корней: A · A = A 2 = A . Посмотрим, как правильно применять этот метод на практике.
Условие: даны дроби x 3 и — 1 x 2 + y — 4 . Избавьтесь от иррациональности в их знаменателях.
Решение
Выполним умножение первой дроби на корень второй степени из 3 . Получим следующее:
x 3 = x · 3 3 · 3 = x · 3 3 2 = x · 3 3
Во втором случае нам надо выполнить умножение на x 2 + y — 4 и преобразовать получившееся выражение в знаменателе:
— 1 x 2 + y — 4 = — 1 · x 2 + y — 4 x 2 + y — 4 · x 2 + y — 4 = = — x 2 + y — 4 x 2 + y — 4 2 = — x 2 + y — 4 x 2 + y — 4
Ответ: x 3 = x · 3 3 и — 1 x 2 + y — 4 = — x 2 + y — 4 x 2 + y — 4 .
Если же в знаменателе исходной дроби имеются выражения вида A n m или A m n (при условии натуральных m и n ), нам нужно выбрать такой множитель, чтобы получившееся выражение можно было преобразовать в A n n · k или A n · k n (при натуральном k ). После этого избавиться от иррациональности будет несложно. Разберем такой пример.
Условие: даны дроби 7 6 3 5 и x x 2 + 1 4 15 . Избавьтесь от иррациональности в знаменателях.
Решение
Нам нужно взять натуральное число, которое можно разделить на пять, при этом оно должно быть больше трех. Чтобы показатель 6 стал равен 5 , нам надо выполнить умножение на 6 2 5 . Следовательно, обе части исходной дроби нам придется умножить на 6 2 5 :
7 6 3 5 = 7 · 6 2 5 6 3 5 · 6 2 5 = 7 · 6 2 5 6 3 5 · 6 2 = 7 · 6 2 5 6 5 5 = = 7 · 6 2 5 6 = 7 · 36 5 6
Во втором случае нам потребуется число, большее 15 , которое можно разделить на 4 без остатка. Берем 16 . Чтобы получить такой показатель степени в знаменателе, нам надо взять в качестве множителя x 2 + 1 4 . Уточним, что значение этого выражения не будет 0 ни в каком случае. Вычисляем:
x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 15 · x 2 + 1 4 = = x · x 2 + 1 4 x 2 + 1 4 16 = x · x 2 + 1 4 x 2 + 1 4 4 4 = x · x 2 + 1 4 x 2 + 1 4
Ответ: 7 6 3 5 = 7 · 36 5 6 и x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 .
Избавление от иррациональности методом умножения на сопряженное выражение
Следующий метод подойдет для тех случаев, когда в знаменателе исходной дроби стоят выражения a + b , a — b , a + b , a — b , a + b , a — b . В таких случаях нам надо взять в качестве множителя сопряженное выражение. Поясним смысл этого понятия.
Для первого выражения a + b сопряженным будет a — b , для второго a — b – a + b . Для a + b – a — b , для a — b – a + b , для a + b – a — b , а для a — b – a + b . Иначе говоря, сопряженное выражение – это такое выражение, в котором перед вторым слагаемым стоит противоположный знак.
Давайте рассмотрим, в чем именно заключается данный метод. Допустим, у нас есть произведение вида a — b · a + b . Оно может быть заменено разностью квадратов a — b · a + b = a 2 — b 2 , после чего мы переходим к выражению a − b , лишенному радикалов. Таким образом, мы освободились от иррациональности в знаменателе дроби с помощью умножения на сопряженное выражение. Возьмем пару наглядных примеров.
Условие: избавьтесь от иррациональности в выражениях 3 7 — 3 и x — 5 — 2 .
Решение
В первом случае берем сопряженное выражение, равное 7 + 3 . Теперь производим умножение обеих частей исходной дроби на него:
3 7 — 3 = 3 · 7 + 3 7 — 3 · 7 + 3 = 3 · 7 + 3 7 2 — 3 2 = = 3 · 7 + 3 7 — 9 = 3 · 7 + 3 — 2 = — 3 · 7 + 3 2
Во втором случае нам понадобится выражение — 5 + 2 , которое является сопряженным выражению — 5 — 2 . Умножим на него числитель и знаменатель и получим:
x — 5 — 2 = x · — 5 + 2 — 5 — 2 · — 5 + 2 = = x · — 5 + 2 — 5 2 — 2 2 = x · — 5 + 2 5 — 2 = x · 2 — 5 3
Возможно также перед умножением выполнить преобразование: если мы вынесем из знаменателя сначала минус, считать будет удобнее:
x — 5 — 2 = — x 5 + 2 = — x · 5 — 2 5 + 2 · 5 — 2 = = — x · 5 — 2 5 2 — 2 2 = — x · 5 — 2 5 — 2 = — x · 5 — 2 3 = = x · 2 — 5 3
Ответ: 3 7 — 3 = — 3 · 7 + 3 2 и x — 5 — 2 = x · 2 — 5 3 .
Важно обратить внимание на то, чтобы выражение, полученное в итоге умножения, не обращалось в 0 ни при каких переменных из области допустимых значений для данного выражения.
Условие: дана дробь x x + 4 . Преобразуйте ее так, чтобы в знаменателе не было иррациональных выражений.
Решение
Начнем с нахождения области допустимых значений переменной x . Она определена условиями x ≥ 0 и x + 4 ≠ 0 . Из них можно сделать вывод, что нужная область представляет собой множество x ≥ 0 .
Сопряженное знаменателю выражение представляет собой x — 4 . Когда мы можем выполнить умножение на него? Только в том случае, если x — 4 ≠ 0 . На области допустимых значений это будет равносильно условию x≠16. В итоге мы получим следующее:
x x + 4 = x · x — 4 x + 4 · x — 4 = = x · x — 4 x 2 — 4 2 = x · x — 4 x — 16
Если x будет равен 16 , то мы получим:
x x + 4 = 16 16 + 4 = 16 4 + 4 = 2
Следовательно, x x + 4 = x · x — 4 x — 16 при всех значениях x , принадлежащих области допустимых значений, за исключением 16 . При x = 16 получим x x + 4 = 2 .
Ответ: x x + 4 = x · x — 4 x — 16 , x ∈ [ 0 , 16 ) ∪ ( 16 , + ∞ ) 2 , x = 16 .
Преобразование дробей с иррациональностью в знаменателе с использованием формул суммы и разности кубов
В предыдущем пункте мы выполняли умножение на сопряженные выражения с тем, чтобы потом использовать формулу разности квадратов. Иногда для избавления от иррациональности в знаменателе полезно воспользоваться и другими формулами сокращенного умножения, например, разностью кубов a 3 − b 3 = ( a − b ) · ( a 2 + a · b + b 2 ) . Этой формулой удобно пользоваться, если в знаменателе исходной дроби стоят выражения с корнями третьей степени вида A 3 — B 3 , A 3 2 + A 3 · B 3 + B 3 2 . и т.д. Чтобы применить ее, нам нужно умножить знаменатель дроби на неполный квадрат суммы A 3 2 + A 3 · B 3 + B 3 2 или разность A 3 — B 3 . Точно также можно применить и формулу суммы a 3 + b 3 = ( а ) · ( a 2 − a · b + b 2 ) .
Условие: преобразуйте дроби 1 7 3 — 2 3 и 3 4 — 2 · x 3 + x 2 3 так, чтобы избавиться от иррациональности в знаменателе.
Решение
Для первой дроби нам нужно воспользоваться методом умножения обеих частей на неполный квадрат суммы 7 3 и 2 3 , поскольку потом мы сможем выполнить преобразование с помощью формулы разности кубов:
1 7 3 — 2 3 = 1 · 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 — 2 3 · 7 3 2 + 7 3 · 2 3 + 2 3 2 = = 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 3 — 2 3 3 = 7 2 3 + 7 · 2 3 + 2 2 3 7 — 2 = = 49 3 + 14 3 + 4 3 5
Во второй дроби представим знаменатель как 2 2 — 2 · x 3 + x 3 2 . В этом выражении виден неполный квадрат разности 2 и x 3 , значит, мы можем умножить обе части дроби на сумму 2 + x 3 и воспользоваться формулой суммы кубов. Для этого должно быть соблюдено условие 2 + x 3 ≠ 0 , равносильное x 3 ≠ — 2 и x ≠ − 8 :
3 4 — 2 · x 3 + x 2 3 = 3 2 2 — 2 · x 3 + x 3 2 = = 3 · 2 + x 3 2 2 — 2 · x 3 + x 3 2 · 2 + x 3 = 6 + 3 · x 3 2 3 + x 3 3 = = 6 + 3 · x 3 8 + x
Подставим в дробь — 8 и найдем значение:
3 4 — 2 · 8 3 + 8 2 3 = 3 4 — 2 · 2 + 4 = 3 4
Подведем итоги. При всех x , входящих в область значений исходной дроби (множество R ), за исключением — 8 , мы получим 3 4 — 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x . Если x = 8 , то 3 4 — 2 · x 3 + x 2 3 = 3 4 .
Ответ: 3 4 — 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x , x ≠ 8 3 4 , x = — 8 .
Последовательное применение различных способов преобразования
Часто на практике встречаются более сложные примеры, когда мы не можем освободиться от иррациональности в знаменателе с помощью всего одного метода. Для них нужно последовательно выполнять несколько преобразований или подбирать нестандартные решения. Возьмем одну такую задачу.
Условие: преобразуйте 5 7 4 — 2 4 , чтобы избавиться от знаков корней в знаменателе.
Решение
Выполним умножение обеих частей исходной дроби на сопряженное выражение 7 4 + 2 4 с ненулевым значением. Получим следующее:
5 7 4 — 2 4 = 5 · 7 4 + 2 4 7 4 — 2 4 · 7 4 + 2 4 = = 5 · 7 4 + 2 4 7 4 2 — 2 4 2 = 5 · 7 4 + 2 4 7 — 2
А теперь применим тот же способ еще раз:
5 · 7 4 + 2 4 7 — 2 = 5 · 7 4 + 2 4 · 7 + 2 7 — 2 · 7 + 2 = = 5 · 7 4 + 2 4 · 7 + 2 7 2 — 2 2 = 5 · 7 4 + 7 4 · 7 + 2 7 — 2 = = 5 · 7 4 + 2 4 · 7 + 2 5 = 7 4 + 2 4 · 7 + 2
Ответ: 5 7 4 — 2 4 = 7 4 + 2 4 · 7 + 2 .
Источник