Как избавится от иррациональности под корнем

Содержание
  1. Как избавиться от иррациональности
  2. Что такое иррациональность в знаменателе дроби
  3. Как избавиться от иррациональности, когда в знаменателе только один корень
  4. № 366 (1) Колягин, Алимов 9 класс
  5. Как избавиться от иррациональности, когда в знаменателе несколько корней
  6. № 366 (3) Колягин, Алимов 9 класс
  7. Примеры освобождения от иррациональности в знаменателе
  8. № 366 (2; 7) Колягин, Алимов 9 класс
  9. № 557 (5) Мерзляк 9 класс
  10. Иррациональные выражения (выражения с корнями) и их преобразование
  11. Что такое иррациональные выражения?
  12. Основные виды преобразований иррациональных выражений
  13. Преобразование подкоренного выражения
  14. Использование свойств корней
  15. Внесение множителя под знак корня
  16. Вынесение множителя из-под знака корня
  17. Преобразование дробей, содержащих корни
  18. Избавление от иррациональности в знаменателе
  19. Переход от корней к степеням

Как избавиться от иррациональности

Иррациональностью в знаменателе (нижней части дроби) называют наличие корней в знаменателе.

Что такое иррациональность в знаменателе дроби

Рассмотрим на примерах ниже, в каких дробях в знаменателе есть иррациональность, а в каких её нет.

  • √ 6
    2

    в знаменателе нет корней, значит иррациональности нет ;

  • 5
    √ 6

    в знаменателе есть
    корень « √ 6 » — иррациональность в знаменателе есть .

  • 4
    √ 7 − √ 3

    в знаменателе есть корни « √ 7 » и « √ 3 » — иррациональность есть .

  • a + b
    √ c − 3

    в знаменателе есть
    корень « √ c − 3 » — иррациональность в знаменателе есть .

Избавиться от иррациональности в знаменателе означает убрать все корни из знаменателя.

Возникает логичный вопрос, как это можно сделать?

Чаще всего встречаются два вида примеров. Рассмотрим решение обоих видов.

Как избавиться от иррациональности, когда в знаменателе только один корень

На помощь приходит основное свойство дроби. Вспомним, что оно позволяет умножить и разделить дробь на одно и то же число, чтобы в конечном итоге дробь не изменилась.

Чтобы избавиться от иррациональности в знаменателе с одним корнем, нужно умножить и числитель, и знаменатель на корень из знаменателя.

По традиции разберемся на практике.

№ 366 (1) Колягин, Алимов 9 класс

Исключить иррациональность из знаменателя:

Зададим себе вопрос, на что нужно умножить « √ 5 » в знаменателе, чтобы избавиться от корня.

Ответ: на « √ 5 ». В самом деле, если квадратный корень умножить сам на себя получится число под корнем. Проверим.

√ 5 · √ 5 = √ 5 · 5 = √ 5 2 = 5

Используем основное свойство дроби, умножим и числитель, и знаменатель на « √ 5 », чтобы избавиться от корня в знаменателе.

3
√ 5

=

3 · √ 5
√ 5 · √ 5

=

3 · √ 5
√ 5 · 5

=

3 · √ 5
√ 5 2

=
=

3 · √ 5
5

Как избавиться от иррациональности, когда в знаменателе несколько корней

Чтобы избавиться от иррациональности в знаменателе c несколькими корнями, нужно использовать формулы сокращённого умножения.

Разберемся по традиции на примере.

№ 366 (3) Колягин, Алимов 9 класс

Исключить иррациональность из знаменателя:

На что нужно умножить знаменатель « 2 − √ 3 » , чтобы убрать из него корень?

Теперь недостаточно умножить знаменатель на « √ 3 » , ведь в таком случае все равно остается квадратный корень.

(2 − √ 3 ) · √ 3 = 2 √ 3 − √ 3 · √ 3 =

Мы видим, что корень никуда не исчез. Нужно искать другие варианты решения.

Вспомним формулу сокращенного умножения «Разность квадратов».

Формула разности квадратов также работает в обратную сторону.

Представим, что « 2 − √ 3 » — это часть формулы.

Логично предположить, что в формуле « a » — это « 2 », « b » — « √ 3 ». Подставим вместо знаков « ? » числа.

(a + b)(a − b) = a 2 − b 2

(2 + √ 3 )(2 − √ 3 ) = 2 2 − √ 3 2 = 4 − 3 = 1

То есть, чтобы избавиться от иррациональности в дроби требуется умножить знаменатель « 2 − √ 3 »
на « 2 + √ 3 » и через формулу «Разность квадратов» убрать квадратные корни.

Не забываем, что по основному свойству дроби мы обязаны также умножить числитель на « 2 + √ 3 ».

1
2 − √ 3

=

1 · (2 + √ 3 )
(2 − √ 3 ) · ( 2 + √ 3 )

=
=

2 + √ 3
2 2 − √ 3 2

=

2 + √ 3
4 − 3

=

2 + √ 3
1

= 2 + √ 3

Примеры освобождения от иррациональности в знаменателе

№ 366 (2; 7) Колягин, Алимов 9 класс

Исключить иррациональность из знаменателя:

2)

2
√ 6
2
√ 6

=

2 · √ 6
√ 6 · √ 6

=

2 · √ 6
√ 6 · 6

=

2· √ 6
√ 6 2

=
=

2 · √ 6
6

Рассмотрим пример, когда в знаменателе несколько корней.

7)

√ 5 − √ 7
√ 5 + √ 7

=

Используем формулу сокращенного умножения «Разность квадратов».

Умножим и числитель, и знаменатель на «( √ 5 − √ 7 )», чтобы использовать формулу сокращённого умножения в знаменателе и избавиться от корней.

√ 5 − √ 7
√ 5 + √ 7

=

( √ 5 − √ 7 ) ( √ 5 − √ 7 )
( √ 5 + √ 7 ) ( √ 5 − √ 7 )

=
=

( √ 5 − √ 7 ) 2
√ 5 2 − √ 7 2

= …

Используем в числителе (наверху в дроби) формулу «Квадрат разности».

(a − b) 2 = a 2 − 2ab + b 2

√ 5 − √ 7
√ 5 + √ 7

=

( √ 5 − √ 7 ) ( √ 5 − √ 7 )
( √ 5 + √ 7 ) ( √ 5 − √ 7 )

=
=

( √ 5 − √ 7 ) 2
√ 5 2 − √ 7 2

=
=

( √ 5 ) 2 − 2 · √ 5 · √ 7 + ( √ 7 ) 2
√ 5 2 − √ 7 2

=

=

5 − 2 √ 5 · 7 + 7
5 − 7

=

12 − 2 √ 35
− 2

=
= −

12 − 2 √ 35
2

= …

√ 5 − √ 7
√ 5 + √ 7

=

( √ 5 − √ 7 ) ( √ 5 − √ 7 )
( √ 5 + √ 7 ) ( √ 5 − √ 7 )

=
=

( √ 5 − √ 7 ) 2
√ 5 2 − √ 7 2

=

=

( √ 5 ) 2 − 2 · √ 5 · √ 7 + ( √ 7 ) 2
√ 5 2 − √ 7 2

=
=

5 − 2 √ 5 · 7 + 7
5 − 7

=

12 − 2 √ 35
− 2

=

= −

12 − 2 √ 35
2

= −

2 · (6 − √ 35 )
2

=
= −

2 (6 − √ 35 )
2

=
= − (6 − √ 35 ) = −6 + √ 35

№ 557 (5) Мерзляк 9 класс

Освободитесь от иррациональности в знаменателе дроби:

5)

1
√ a − √ b

Используем формулу сокращенного умножения «Разность квадратов».

Умножим и числитель, и знаменатель на « ( √ a + √ b ) », чтобы использовать формулу «Разность квадратов» в знаменателе и освободиться от корней.

Источник

Иррациональные выражения (выражения с корнями) и их преобразование

Статья раскрывает смысл иррациональных выражений и преобразования с ними. Рассмотрим само понятие иррациональных выражений, преобразование и характерные выражения.

Что такое иррациональные выражения?

При знакомстве с корнем в школе мы изучаем понятие иррациональных выражений. Такие выражения тесно связаны с корнями.

Иррациональные выражения – это выражения, которые имеют корень. То есть это выражения, имеющие радикалы.

Основываясь на данном определении, мы имеем, что x — 1 , 8 3 · 3 6 — 1 2 · 3 , 7 — 4 · 3 · ( 2 + 3 ) , 4 · a 2 d 5 : d 9 2 · a 3 5 — это все выражения иррационального типа.

При рассмотрении выражения x · x — 7 · x + 7 x + 3 2 · x — 8 3 получаем, что выражение является рациональным. К рациональным выражениям относят многочлены и алгебраические дроби. Иррациональные включают в себя работу с логарифмическими выражениями или подкоренными выражениями.

Основные виды преобразований иррациональных выражений

При вычислении таких выражений необходимо обратить внимание на ОДЗ. Часто они требуют дополнительных преобразований в виде раскрытия скобок, приведения подобных членов, группировок и так далее. Основа таких преобразований – действия с числами. Преобразования иррациональных выражений придерживаются строгого порядка.

Преобразовать выражение 9 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3 .

Необходимо выполнить замену числа 9 на выражение, содержащее корень. Тогда получаем, что

81 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3 = = 9 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3

Полученное выражение имеет подобные слагаемые, поэтому выполним приведение и группировку. Получим

9 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3 = = 9 — 2 + 1 + 3 3 + 4 · 3 3 — 2 · 3 3 = = 8 + 3 · 3 3
Ответ: 9 + 3 3 — 2 + 4 · 3 3 + 1 — 2 · 3 3 = 8 + 3 · 3 3

Представить выражение x + 3 5 2 — 2 · x + 3 5 + 1 — 9 в виде произведения двух иррациональных с использованием формул сокращенного умножения.

x + 3 5 2 — 2 · x + 3 5 + 1 — 9 = = x + 3 5 — 1 2 — 9

Представляем 9 в виде 3 2 , причем применим формулу разности квадратов:

x + 3 5 — 1 2 — 9 = x + 3 5 — 1 2 — 3 2 = = x + 3 5 — 1 — 3 · x + 3 5 — 1 + 3 = = x + 3 5 — 4 · x + 3 5 + 2

Результат тождественных преобразований привел к произведению двух рациональных выражений, которые необходимо было найти.

x + 3 5 2 — 2 · x + 3 5 + 1 — 9 = = x + 3 5 — 4 · x + 3 5 + 2

Можно выполнять ряд других преобразований, которые относятся к иррациональным выражениям.

Преобразование подкоренного выражения

Важно то, что выражение, находящееся под знаком корня, можно заменить на тождественно равное ему. Данное утверждение дает возможность работать с подкоренным выражением. К примеру, 1 + 6 можно заменить на 7 или 2 · a 5 4 — 6 на 2 · a 4 · a 4 — 6 . Они тождественно равные, поэтому замена имеет смысл.

Когда не существует а 1 , отличное от a , где справедливо неравенство вида a n = a 1 n , тогда такое равенство возможно только при а = а 1 . Значения таких выражений равны с любыми значениями переменных.

Использование свойств корней

Свойства корней применяют для упрощения выражений. Чтобы применить свойство a · b = a · b , где a ≥ 0 , b ≥ 0 , тогда из иррационального вида 1 + 3 · 12 можно стать тождественно равным 1 + 3 · 12 . Свойство . . . a n k n 2 n 1 = a n 1 · n 2 · , . . . , · n k , где a ≥ 0 говорит о том, что x 2 + 4 4 3 можно записать в форме x 2 + 4 24 .

Имеются некоторые нюансы при преобразовании подкоренных выражений. Если имеется выражение, то — 7 — 81 4 = — 7 4 — 81 4 записать не можем, так как формула a b n = a n b n служит только для неотрицательного a и положительного b . Если свойство применить правильно, тогда получится выражение вида 7 4 81 4 .

Для правильного преобразования используют преобразования иррациональных выражений с использованием свойств корней.

Внесение множителя под знак корня

Внести под знак корня – значит заменить выражение B · C n , а B и C являются некоторыми числами или выражениями, где n – натуральное число, которое больше 1 , равным выражением, которое имеет вид B n · C n или — B n · C n .

Если упростить выражение вида 2 · x 3 , то после внесения под корень, получаем, что 2 3 · x 3 . Такие преобразования возможны только после подробного изучения правил внесения множителя под знак корня.

Вынесение множителя из-под знака корня

Если имеется выражение вида B n · C n , тогда его приводят к виду B · C n , где имеется нечетные n , которые принимают вид B · C n с четными n , В и C являются некоторыми числами и выражениями.

То есть, если брать иррациональное выражение вида 2 3 · x 3 , вынести множитель из-под корня, тогда получим выражение 2 · x 3 . Или x + 1 2 · 7 даст в результате выражение вида x + 1 · 7 , которое имеет еще одну запись в виде x + 1 · 7 .

Вынесение множителя из-под корня необходимо для упрощения выражения и его быстрого преобразования.

Преобразование дробей, содержащих корни

Иррациональное выражение может быть как натуральным числом, так и в виде дроби. Для преобразования дробных выражений большое внимание обращают на его знаменатель. Если взять дробь вида ( 2 + 3 ) · x 4 x 2 + 5 3 , то числитель примет вид 5 · x 4 , а, использовав свойства корней, получим, что знаменатель станет x 2 + 5 6 . Исходную дробь можно будет записать в виде 5 · x 4 x 2 + 5 6 .

Необходимо обратить внимание на то, что необходимо изменять знак только числителя или только знаменателя. Получим, что

— x + 2 · x — 3 · x 2 + 7 4 = x + 2 · x — ( — 3 · x 2 + 7 4 ) = x + 2 · x 3 · x 2 — 7 4

Сокращение дроби чаще всего используется при упрощении. Получаем, что

3 · x + 4 3 — 1 · x x + 4 3 — 1 3 сокращаем на x + 4 3 — 1 . Получим выражение 3 · x x + 4 3 — 1 2 .

Перед сокращением необходимо выполнять преобразования, которые упрощают выражение и дают возможность разложить на множители сложное выражение. Чаще всего применяют формулы сокращенного умножения.

Если взять дробь вида 2 · x — y x + y , то необходимо вводить новые переменные u = x и v = x , тогда заданное выражение поменяет вид и станет 2 · u 2 — v 2 u + v . Числитель следует разложить на многочлены по формуле, тогда получим, что

2 · u 2 — v 2 u + v = 2 · ( u — v ) · u + v u + v = 2 · u — v . После выполнения обратной замены придем к виду 2 · x — y , которое равно исходному.

Допускается приведение к новому знаменателю, тогда необходимо числитель умножать на дополнительный множитель. Если взять дробь вида x 3 — 1 0 , 5 · x , тогда приведем к знаменателю x . для этого нужно умножить числитель и знаменатель на выражение 2 · x , тогда получаем выражение x 3 — 1 0 , 5 · x = 2 · x · x 3 — 1 0 , 5 · x · 2 · x = 2 · x · x 3 — 1 x .

Сокращение дробей или приведение подобных необходимо только на ОДЗ указанной дроби. При умножении числителя и знаменателя на иррациональное выражение получаем, что мы избавляемся от иррациональности в знаменателе.

Избавление от иррациональности в знаменателе

Когда выражение избавляется от корня в знаменателе путем преобразования, то это называется избавлением от иррациональности. Рассмотрим на примере дроби вида x 3 3 . После избавления от иррациональности получаем новую дробь вида 9 3 · x 3 .

Переход от корней к степеням

Переходы от корней к степеням необходимы для быстрого преобразования иррациональных выражений. Если рассмотреть равенство a m n = a m n , то видно, что его использование возможно, когда a является положительным числом, m –целым числом, а n – натуральным. Если рассматривать выражение 5 — 2 3 , то иначе имеем право записать его как 5 — 2 3 . Эти выражения равнозначны.

Когда под корнем имеется отрицательное число или число с переменными, тогда формула a m n = a m n не всегда применима. Если нужно заменить такие корни ( — 8 ) 3 5 и ( — 16 ) 2 4 степенями, тогда получаем, что — 8 3 5 и — 16 2 4 по формуле a m n = a m n не работаем с отрицательными а. для того, чтобы подробно разобрать тему подкоренных выражений и их упрощений, необходимо изучать статью о переходе от корней к степеням и обратно. Следует помнить о том, что формула a m n = a m n применима не для всех выражений такого вида. Избавление от иррациональности способствует дальнейшему упрощению выражения, его преобразованию и решению.

Источник

Читайте также:  Поздравление с днем рождения с тараканами
Оцените статью
Избавляемся от вредителей