В математике кроме натуральных, рациональных и вещественных чисел имеется ещё один вид, называемый комплексными числами. Такое множество принято обозначать символом $ \mathbb $.
Рассмотрим, что из себя представляет комплексное число. Запишем его таким образом: $ z = a + ib $, в котором мнимая единица $ i = \sqrt <-1>$, числа $ a,b \in \mathbb $ вещественные.
Если положить $ b = 0 $, то комплексное число превращается в вещественное. Таким образом, можно сделать вывод, что действительные числа это частный случай комплексных и записать это в виде подмножества $ \mathbb \subset \mathbb $. К слову говоря также возможно, что $ a = 0 $.
Принято записывать мнимую часть комплексного числа как $ Im(z) = b $, а действительную $ Re(z) = a $.
Введем понятие комплексно-сопряженных чисел. К каждому комплексному числу $ z = a+ib $ существует такое, что $ \overline = a-ib $, которое и называется сопряженным. Такие числа отличаются друг от друга только знаками между действительной и мнимой частью.
Формы
Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:
Алгебраическая $ z = a+ib $
Показательная $ z = |z|e^ $
Тригонометрическая $ z = |z|\cdot(\cos(\varphi)+i\sin(\varphi)) $
Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.
Изображение
Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:
Видим, что $ a,b \in \mathbb $ расположены на соответствующих осях плоскости.
Комплексное число $ z = a+ib $ представляется в виде вектора $ \overline $.
Аргумент обозначается $ \varphi $.
Модуль $ |z| $ равняется длине вектора $ \overline $ и находится по формуле $ |z| = \sqrt $
Аргумент комплексного числа $ \varphi $ нужно находить по различным формулам в зависимости от полуплоскости, в которой лежит само число.
Вычислить сумму и разность заданных комплексных чисел:
$$ z_1 = 3+i, z_2 = 5-2i $$
Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:
Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:
Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:
В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.
Решать будем по общей формуле, которую все выучили в 8 классе. Находим дискриминант $$ D = b^2 — 4ac = 2^2 — 4\cdot 1 \cdot 2 = 4-8 = -4 $$
Источник
Как избавится от комплексного числа
Комплексным числомназывается выражение вида z = x + iy , (7.1)
где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы
Если x=0, то число 0+ iy=iy называется чисто мнимым; если y=0, то число x+i∙0= x отождествляется с действительным числом x , а это означает, что множество R всех действительных чисел является подмножеством множества C всех комплексных чисел, то есть .
Число x называется действительной частью комплексного числа z и обозначается x= Re z , а y – мнимой частью комплексного числа z и обозначается y= Im z .
Понятия «больше» и «меньше» для комплексных чисел не вводятся.
Числа z=x+iy и называются комплексносопряженными.
Всякое комплексное число z=x+iy можно изобразить точкой M ( x ; y ) плоскости x 0 y такой, что x= Re z , y= Im z . Верно и обратное: каждую точку M ( x;y ) координатной плоскости можно рассматривать как образ комплексного числа z=x+iy (рис. 7.1).
Комплексное число z=x+iy можно задавать с помощью радиус-вектора . Длина вектора , изображающего комплексное число z , называется модулем этого числа и обозначается | z | или r . Величина угла между положительным направлением действительной оси и вектором называется аргументом комплексного числа, обозначается Arg z или φ.
Для комплексного числа z=0 аргумент не определен. Аргумент комплексного числа – величина многозначная и определяется с точностью до слагаемого 2πk ( k=0;–1;1;–2;2…): , где arg z – главное значение аргумента, заключенное в промежутке (–π;π). Иногда в качестве главного значения аргумента берут величину, принадлежащую промежутку [0;2π).
Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.
Модуль r и аргумент φ можно рассматривать как полярные координаты вектора , изображающего комплексное число z=x+iy (см. рис. 7.1). Тогда из соотношений сторон в прямоугольном треугольнике получаем
Равенство (7.3) естьтригонометрическая форма комплексного числа. Модуль r= |z| однозначно определяется по формуле
Аргумент определяется из формул:
При переходе от алгебраической формы комплексного числа к тригонометрической достаточно определить главное значение аргумента комплексного числа z , то есть считать φ= arg z . Знаки полученных значений cos φ и sin φ по формулам (7.5), дают возможность определить, какой координатной четверти принадлежит угол φ.
Используя формулу Эйлера
комплексное число можно записать в так называемой показательной (или экспоненциальной) форме
где r=| z | — модуль комплексного числа, а угол ( k=0;–1;1;–2;2…).
Функция e iφ – периодическая с основным периодом 2 π, поэтому для записи комплексного числа в показательной форме по формуле 7.7 достаточно найти главное значение его аргумента, то есть считать φ = arg z .
Пример 7.1. Записать комплексные числа в тригонометрической и показательной формах.
Решение. Для z1 имеем . Поэтому .
Для действительного числа . Поэтому
На множестве комплексны х чисел определен ряд операций.
Из равенства (7.9) следует, что геометрически комплексные числа вычитаются как векторы. При этом число z=z1–z2 изображается вектором, соединяющим концы векторов , и исходящим из конца вычитаемого в конец уменьшаемого (см. рис. 7.2). Таким образом, модуль разности двух комплексных чисел равен расстоянию d между точками, изображающими эти числа на плоскости:
Из (7.11) следует важнейшее соотношение i 2 =–1. Действительно,
Найдем произведение комплексных чисел и . Производя все необходимые выкладки согласно формуле (7.11), получим формулу произведения комплексных чисел, заданных втригонометрической форме :
Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа внатуральную степень:
(7.13) называется первой формулой Муавра.
Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
4.Частным двух комплексных чиселz1 и называется комплексное число z , которое, будучи умноженным на z2, дает число z1, то есть , если .
Пусть , тогда с использованием этого определения получаем:
На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби на число, сопряженное знаменателю, с дальнейшим применением равенства i 2 =–1 и формулы разности квадратов.
Делениекомплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:
Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.
Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
Пример 7.2. Найти сумму, разность, произведение и частное комплексных чисел .
Решение. По формуле (7.8) сумма заданных чисел равна .
Согласно формуле (7.9) разность заданных чисел равна .
Пользуясь формулой (7.11), вычислим их произведение
На основании формулы (7.14) вычислим их частное
Пример 7.3. Найти произведение и частное комплексных чисел , представив их в тригонометрической и показательной форме.
Решение. Используя (7.4) и (7.5), получаем:
Аналогично, для z2 можно записать:
По формулам (7.12) и (7.16) получим в тригонометрической форме:
Пользуясь формулами (7.14) и (7.17), получим в показательной форме:
5. Извлечение корня n -ой степени – операция, обратная возведению
в натуральную степень, определенному ранее формулой (7.13).
Корнемn-ой степени из комплексного числаz называется комплексное число ω, удовлетворяющее равенству ωn=z , то есть , если ωn=z .
Пусть , тогда по данному определению и формуле (7.13) Муавра можно записать: . Сравнивания части этого равенства, получим: . Отсюда (корень арифметический). Окончательно получаем:
(7.18) называется второй формулой Муавра.
Видно, что для любого корень n -ой степени из комплексного числа z имеет равно n различных значений.
Пример 7.4. Найти все корни уравнения z 4 +16=0.
Решение. Запишем уравнение в виде z 4 =–16+0∙ i . Отсюда по формуле (7.18) получим:
Сформулируем несколько иначе основную теорему алгебры 3.2 над полем комплексных чисел .
Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами
Приведем еще одну теорему, имеющую место над множеством комплексных чисел.
Теорема 7.2. Если многочлен Pn( x ) с действительными коэффициентами имеет комплексный корень a+ib , то он имеет и сопряженный корень a–ib
В разложение многочлена комплексные корни входят сопряженными парами. Пусть корни многочлена x 1 = a + ib и x 2 = a – ib . Перемножив линейные множители разложения , получим трехчлен второй степени с действительными коэффициентами x 2 + px + q и отрицательным дискриминантом. Действительно,
Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.