Как избавится от квадрат

Содержание
  1. как избавиться от квадрата в уравнении
  2. Где можно решить любую задачу по математике, а так же как избавиться от квадрата в уравнении Онлайн?
  3. Как избавиться от квадратного корня в уравнении — математический — 2021
  4. TL; DR (слишком долго; не читал)
  5. Простой пример
  6. Изолировать квадратный корень
  7. Квадрат обе стороны уравнения
  8. Проверь свою работу
  9. Немного более сложный пример
  10. Изолировать радикальное
  11. Предупреждения
  12. Квадрат обе стороны
  13. Предупреждения
  14. Изолировать переменную
  15. Проверь свою работу
  16. Как оценить логарифмы с основанием квадратного корня
  17. Как оценить, используя кривую квадратного корня
  18. Как получить ответ квадратного корня из квадратного корня на Ти-84
  19. Квадратный корень. Действия с квадратными корнями. Модуль. Сравнение квадратных корней
  20. Эффективное решение существует!
  21. Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

как избавиться от квадрата в уравнении

Вы искали как избавиться от квадрата в уравнении? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и как решить уравнение с квадратным корнем, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «как избавиться от квадрата в уравнении».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как как избавиться от квадрата в уравнении,как решить уравнение с квадратным корнем. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и как избавиться от квадрата в уравнении. Просто введите задачу в окошко и нажмите «решить» здесь (например, как избавиться от квадрата в уравнении).

Где можно решить любую задачу по математике, а так же как избавиться от квадрата в уравнении Онлайн?

Решить задачу как избавиться от квадрата в уравнении вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Источник

Как избавиться от квадратного корня в уравнении — математический — 2021

Когда вы впервые узнали о квадратах чисел, таких как 3 2 , 5 2 и x 2 , вы, вероятно, узнали об обратной операции с квадратами, а также о квадратном корне. Эта обратная связь между квадратными числами и квадратными корнями важна, потому что на простом английском языке это означает, что одна операция отменяет влияние другой. Это означает, что если у вас есть уравнение с квадратными корнями, вы можете использовать операцию «возведения в квадрат» или экспоненты, чтобы удалить квадратные корни. Но есть некоторые правила о том, как это сделать, а также потенциальная ловушка ложных решений.

TL; DR (слишком долго; не читал)

Чтобы решить уравнение с квадратным корнем, сначала выделите квадратный корень с одной стороны уравнения. Затем возведите в квадрат обе стороны уравнения и продолжайте решение для переменной. Не забудьте проверить свою работу в конце.

Простой пример

Прежде чем рассмотреть некоторые потенциальные «ловушки» решения уравнения с квадратными корнями, рассмотрим простой пример: Решите уравнение √ x + 1 = 5 для x .

Изолировать квадратный корень

Используйте арифметические операции, такие как сложение, вычитание, умножение и деление, чтобы выделить выражение квадратного корня на одной стороне уравнения. Например, если исходное уравнение было √ x + 1 = 5, вы бы вычли 1 из обеих частей уравнения, чтобы получить следующее:

Квадрат обе стороны уравнения

Возведение в квадрат обеих сторон уравнения устраняет знак квадратного корня. Это дает вам:

Или, как только упростили:

Вы удалили знак квадратного корня, и у вас есть значение для x, поэтому ваша работа здесь завершена. Но подождите, есть еще один шаг:

Проверь свою работу

Проверьте свою работу, подставив найденное вами значение x в исходное уравнение:

Поскольку это вернуло правильное утверждение (5 = 5, в отличие от неверного утверждения, такого как 3 = 4 или 2 = -2, решение, которое вы нашли на шаге 2, является действительным. В этом примере проверка вашей работы кажется тривиальной. Но этот метод Устранение радикалов может иногда создавать «ложные» ответы, которые не работают в исходном уравнении, поэтому лучше всегда иметь привычку проверять свои ответы, чтобы убедиться, что они возвращают действительный результат, начиная сейчас.

Читайте также:  Энцефалитный клещ разница с обычным

Немного более сложный пример

Что если у вас есть более сложное выражение под знаком радикала (квадратный корень)? Рассмотрим следующее уравнение. Вы все еще можете применить тот же процесс, который использовался в предыдущем примере, но это уравнение выдвигает на первый план пару правил, которым вы должны следовать.

Изолировать радикальное

Как и раньше, используйте операции, такие как сложение, вычитание, умножение и деление, чтобы выделить выражение радикала на одной стороне уравнения. В этом случае вычитание 5 с обеих сторон дает вам:

Предупреждения

Обратите внимание, что вас просят изолировать квадратный корень (который предположительно содержит переменную, потому что, если бы она была константой вроде √9, вы могли бы просто решить ее на месте; √9 = 3). Вас не просят изолировать переменную. Этот шаг наступает позже, после того как вы удалили знак квадратного корня.

Квадрат обе стороны

Возведите в квадрат обе стороны уравнения, что дает вам следующее:

Что упрощает до:

Предупреждения

Обратите внимание, что вы должны поставить квадрат под знаком радикала, а не только в переменной.

Изолировать переменную

Теперь, когда вы удалили корень или квадратный корень из уравнения, вы можете изолировать переменную. Чтобы продолжить пример, добавив 4 к обеим сторонам уравнения, вы получите:

Проверь свою работу

Как и прежде, проверьте свою работу, подставив найденное вами значение y обратно в исходное уравнение. Это дает вам:

Что упрощает до:

Упрощение радикала дает вам:

29 = 29, верное утверждение, которое указывает на действительный результат.

Как оценить логарифмы с основанием квадратного корня

Логарифм числа идентифицирует степень, которую определенное число, называемое основанием, должно быть увеличено, чтобы произвести это число. В общем виде это выражается как log a (b) = x, где a — основание, x — мощность, на которую возводится основание, а b — значение, в котором логарифм .

Как оценить, используя кривую квадратного корня

Кривая квадратного корня — это метод повышения оценок всего класса, чтобы привести их в соответствие с ожиданиями. Его можно использовать для коррекции неожиданно сложных испытаний или, как правило, для сложных занятий.

Как получить ответ квадратного корня из квадратного корня на Ти-84

Чтобы найти квадратный корень с помощью моделей Texas Instruments TI-84, найдите символ квадратного корня. Эта вторая функция находится над клавишей x в квадрате на всех моделях. Нажмите вторую функциональную клавишу в левом верхнем углу клавиатуры и выберите клавишу х в квадрате. Введите значение, о котором идет речь, и нажмите Enter.

Источник

Квадратный корень. Действия с квадратными корнями. Модуль. Сравнение квадратных корней

Готовиться с нами — ЛЕГКО!

Эффективное решение существует!

Вы ищете теорию и формулы для ЕГЭ по математике ? Образовательный проект «Школково» предлагает вам заглянуть в раздел «Теоретическая справка». Здесь представлено пособие по подготовке к ЕГЭ по математике, которое фактически является авторским. Оно разработано в соответствии с программой школьного курса и включает такие разделы, как арифметика, алгебра, начала анализа и геометрия (планиметрия и стереометрия). Каждое теоретическое положение, содержащееся в пособии по подготовке к ЕГЭ по математике, сопровождается методически подобранными задачами с подробными разъяснениями.

Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить , выполнять самые разнообразные задачи и грамотно объяснять свои решения. А это уже половина успеха при сдаче единого государственного экзамена.

После того, как вы нашли необходимые формулы и теорию для ЕГЭ по математике, рекомендуем вам перейти в раздел «Каталоги» и закрепить полученные знания на практике. Для этого достаточно выбрать задачу по данной теме и решить ее. Кроме того, справочные материалы по математике для ЕГЭ пригодятся вам и для других естественнонаучных дисциплин, таких как физика, химия и т. д.

Факт 1.
\(\bullet\) Возьмем некоторое неотрицательное число \(a\) (то есть \(a\geqslant 0\) ). Тогда (арифметическим) квадратным корнем из числа \(a\) называется такое неотрицательное число \(b\) , при возведении которого в квадрат мы получим число \(a\) : \[\sqrt a=b\quad \text<то же самое, что >\quad a=b^2\] Из определения следует, что \(a\geqslant 0, b\geqslant 0\) . Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть \(100^2=10000\geqslant 0\) и \((-100)^2=10000\geqslant 0\) .
\(\bullet\) Чему равен \(\sqrt<25>\) ? Мы знаем, что \(5^2=25\) и \((-5)^2=25\) . Так как по определению мы должны найти неотрицательное число, то \(-5\) не подходит, следовательно, \(\sqrt<25>=5\) (так как \(25=5^2\) ).
Нахождение значения \(\sqrt a\) называется извлечением квадратного корня из числа \(a\) , а число \(a\) называется подкоренным выражением.
\(\bullet\) Исходя из определения, выражения \(\sqrt<-25>\) , \(\sqrt<-4>\) и т.п. не имеют смысла.

Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от \(1\) до \(20\) : \[\begin <|ll|>\hline 1^2=1 & \quad11^2=121 \\ 2^2=4 & \quad12^2=144\\ 3^2=9 & \quad13^2=169\\ 4^2=16 & \quad14^2=196\\ 5^2=25 & \quad15^2=225\\ 6^2=36 & \quad16^2=256\\ 7^2=49 & \quad17^2=289\\ 8^2=64 & \quad18^2=324\\ 9^2=81 & \quad19^2=361\\ 10^2=100& \quad20^2=400\\ \hline \end\]

Читайте также:  Как травят дома тараканов

Факт 3.
Какие действия можно выполнять с квадратными корнями?
\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt\] Таким образом, если вам нужно вычислить, например, \(\sqrt<25>+\sqrt<49>\) , то первоначально вы должны найти значения \(\sqrt<25>\) и \(\sqrt<49>\) , а затем их сложить. Следовательно, \[\sqrt<25>+\sqrt<49>=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt 2+ \sqrt <49>\) мы можем найти \(\sqrt<49>\) – это \(7\) , а вот \(\sqrt 2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt<49>=\sqrt 2+7\) . Дальше это выражение, к сожалению, упростить никак нельзя \(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt\quad \text<и>\quad \sqrt a:\sqrt b=\sqrt\] (при условии, что обе части равенств имеют смысл)
Пример: \(\sqrt<32>\cdot \sqrt 2=\sqrt<32\cdot 2>=\sqrt<64>=8\) ; \(\sqrt<768>:\sqrt3=\sqrt<768:3>=\sqrt<256>=16\) ; \(\sqrt<(-25)\cdot (-64)>=\sqrt<25\cdot 64>=\sqrt<25>\cdot \sqrt<64>= 5\cdot 8=40\) . \(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем \(\sqrt<44100>\) . Так как \(44100:100=441\) , то \(44100=100\cdot 441\) . По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\) , то есть \(441=9\cdot 49\) .
Таким образом, мы получили: \[\sqrt<44100>=\sqrt<9\cdot 49\cdot 100>= \sqrt9\cdot \sqrt<49>\cdot \sqrt<100>=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt<\dfrac<32\cdot 294><27>>= \sqrt<\dfrac<16\cdot 2\cdot 3\cdot 49\cdot 2><9\cdot 3>>= \sqrt< \dfrac<16\cdot4\cdot49><9>>=\dfrac<\sqrt<16>\cdot \sqrt4 \cdot \sqrt<49>><\sqrt9>=\dfrac<4\cdot 2\cdot 7>3=\dfrac<56>3\]
\(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot \sqrt2\) ). Так как \(5=\sqrt<25>\) , то \[5\sqrt2=\sqrt<25>\cdot \sqrt2=\sqrt<25\cdot 2>=\sqrt<50>\] Заметим также, что, например,
1) \(\sqrt2+3\sqrt2=4\sqrt2\) ,
2) \(5\sqrt3-\sqrt3=4\sqrt3\)
3) \(\sqrt a+\sqrt a=2\sqrt a\) .

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число \(\sqrt2\) мы не можем. Представим, что \(\sqrt2\) – это некоторое число \(a\) . Соответственно, выражение \(\sqrt2+3\sqrt2\) есть не что иное, как \(a+3a\) (одно число \(a\) плюс еще три таких же числа \(a\) ). А мы знаем, что это равно четырем таким числам \(a\) , то есть \(4\sqrt2\) .

Факт 4.
\(\bullet\) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака \(\sqrt <> \ \) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа \(16\) можно, потому что \(16=4^2\) , поэтому \(\sqrt<16>=4\) . А вот извлечь корень из числа \(3\) , то есть найти \(\sqrt3\) , нельзя, потому что нет такого числа, которое в квадрате даст \(3\) .
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt<15>\) и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\) ), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\) ) и т.д.
\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb\) .
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.

Факт 5.
\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\) , равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. Например, \(|3|\) и \(|-3|\) равны 3, так как расстояния от точек \(3\) и \(-3\) до \(0\) одинаковы и равны \(3\) .
\(\bullet\) Если \(a\) – неотрицательное число, то \(|a|=a\) .
Пример: \(|5|=5\) ; \(\qquad |\sqrt2|=\sqrt2\) . \(\bullet\) Если \(a\) – отрицательное число, то \(|a|=-a\) .
Пример: \(|-5|=-(-5)=5\) ; \(\qquad |-\sqrt3|=-(-\sqrt3)=\sqrt3\) .
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число \(0\) , модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная \(x\) (или какая-то другая неизвестная), например, \(|x|\) , про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: \(|x|\) . \(\bullet\) Имеют место следующие формулы: \[<\large<\sqrt=|a|>>\] \[<\large<(\sqrt)^2=a>>, \text < при условии >a\geqslant 0\] Очень часто допускается такая ошибка: говорят, что \(\sqrt\) и \((\sqrt a)^2\) – одно и то же. Это верно только в том случае, когда \(a\) – положительное число или ноль. А вот если \(a\) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо \(a\) число \(-1\) . Тогда \(\sqrt<(-1)^2>=\sqrt<1>=1\) , а вот выражение \((\sqrt <-1>)^2\) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что \(\sqrt\) не равен \((\sqrt a)^2\) ! Пример: 1) \(\sqrt<\left(-\sqrt2\right)^2>=|-\sqrt2|=\sqrt2\) , т.к. \(-\sqrt2 ;

\(\phantom<00000>\) 2) \((\sqrt<2>)^2=2\) . \(\bullet\) Так как \(\sqrt=|a|\) , то \[\sqrt>=|a^n|\] (выражение \(2n\) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) \(\sqrt<4^6>=|4^3|=4^3=64\)
2) \(\sqrt<(-25)^2>=|-25|=25\) (заметим, что если модуль не поставить, то получится, что корень из числа равен \(-25\) ; но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) \(\sqrt>=|x^8|=x^8\) (так как любое число в четной степени неотрицательно)

Факт 6.
Как сравнить два квадратных корня?
\(\bullet\) Для квадратных корней верно: если \(\sqrt a , то \(a ; если \(\sqrt a=\sqrt b\) , то \(a=b\) .
Пример:
1) сравним \(\sqrt<50>\) и \(6\sqrt2\) . Для начала преобразуем второе выражение в \(\sqrt<36>\cdot \sqrt2=\sqrt<36\cdot 2>=\sqrt<72>\) . Таким образом, так как \(50 , то и \(\sqrt <50>. Следовательно, \(\sqrt <50>.
2) Между какими целыми числами находится \(\sqrt<50>\) ?
Так как \(\sqrt<49>=7\) , \(\sqrt<64>=8\) , а \(49 , то \(7 , то есть число \(\sqrt<50>\) находится между числами \(7\) и \(8\) .
3) Сравним \(\sqrt 2-1\) и \(0,5\) . Предположим, что \(\sqrt2-1>0,5\) : \[\begin &\sqrt 2-1>0,5 \ \big| +1\quad \text<(прибавим единицу к обеим частям)>\\[1ex] &\sqrt2>0,5+1 \ \big| \ ^2 \quad\text<(возведем обе части в квадрат)>\\[1ex] &2>1,5^2\\ &2>2,25 \end\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1 .
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3 нельзя (убедитесь в этом сами)! \(\bullet\) Следует запомнить, что \[\begin &\sqrt 2\approx 1,4\\[1ex] &\sqrt 3\approx 1,7 \end\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел! \(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем \(\sqrt<28224>\) . Мы знаем, что \(100^2=10\,000\) , \(200^2=40\,000\) и т.д. Заметим, что \(28224\) находится между \(10\,000\) и \(40\,000\) . Следовательно, \(\sqrt<28224>\) находится между \(100\) и \(200\) .
Теперь определим, между какими “десятками” находится наше число (то есть, например, между \(120\) и \(130\) ). Также из таблицы квадратов знаем, что \(11^2=121\) , \(12^2=144\) и т.д., тогда \(110^2=12100\) , \(120^2=14400\) , \(130^2=16900\) , \(140^2=19600\) , \(150^2=22500\) , \(160^2=25600\) , \(170^2=28900\) . Таким образом, мы видим, что \(28224\) находится между \(160^2\) и \(170^2\) . Следовательно, число \(\sqrt<28224>\) находится между \(160\) и \(170\) .
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце \(4\) ? Это \(2^2\) и \(8^2\) . Следовательно, \(\sqrt<28224>\) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем \(162^2\) и \(168^2\) :
\(162^2=162\cdot 162=26224\)
\(168^2=168\cdot 168=28224\) .
Следовательно, \(\sqrt<28224>=168\) . Вуаля!

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, — на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

Источник

Оцените статью
Избавляемся от вредителей