Как избавиться от минуса перед логарифмом

Основные свойства логарифмов

Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами.

Эти правила обязательно надо знать — без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного — все можно выучить за один день. Итак, приступим.

Сложение и вычитание логарифмов

Рассмотрим два логарифма с одинаковыми основаниями: log a x и log a y . Тогда их можно складывать и вычитать, причем:

Итак, сумма логарифмов равна логарифму произведения, а разность — логарифму частного. Обратите внимание: ключевой момент здесь — одинаковые основания. Если основания разные, эти правила не работают!

Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм»). Взгляните на примеры — и убедитесь:

Поскольку основания у логарифмов одинаковые, используем формулу суммы:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Основания одинаковые, используем формулу разности:
log2 48 − log2 3 = log2 (48 : 3) = log2 16 = 4.

Задача. Найдите значение выражения: log3 135 − log3 5.

Снова основания одинаковые, поэтому имеем:
log3 135 − log3 5 = log3 (135 : 5) = log3 27 = 3.

Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные — подобные выражения на полном серьезе (иногда — практически без изменений) предлагаются на ЕГЭ.

Вынесение показателя степени из логарифма

Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

  1. log a x n = n · log a x ;

Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить — в некоторых случаях это значительно сократит объем вычислений.

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм. Именно это чаще всего и требуется.

Задача. Найдите значение выражения: log7 49 6 .

Избавимся от степени в аргументе по первой формуле:
log7 49 6 = 6 · log7 49 = 6 · 2 = 12

Задача. Найдите значение выражения:

[Подпись к рисунку]

Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 2 4 ; 49 = 7 2 . Имеем:

[Подпись к рисунку]

Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели — получили «трехэтажную» дробь.

Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log2 7. Поскольку log2 7 ≠ 0, можем сократить дробь — в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

Читайте также:  Чем можно покормить крыс

Переход к новому основанию

Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

Пусть дан логарифм log a x . Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

[Подпись к рисунку]

В частности, если положить c = x , получим:

[Подпись к рисунку]

Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

Задача. Найдите значение выражения: log5 16 · log2 25.

Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log5 16 = log5 2 4 = 4log5 2; log2 25 = log2 5 2 = 2log2 5;

А теперь «перевернем» второй логарифм:

[Подпись к рисунку]

Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

Задача. Найдите значение выражения: log9 100 · lg 3.

Основание и аргумент первого логарифма — точные степени. Запишем это и избавимся от показателей:

[Подпись к рисунку]

Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

[Подпись к рисунку]

Основное логарифмическое тождество

Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

  1. n = log a a n

В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

Вторая формула — это фактически перефразированное определение. Она так и называется: .

В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a ? Правильно: получится это самое число a . Внимательно прочитайте этот абзац еще раз — многие на нем «зависают».

Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

Задача. Найдите значение выражения:

[Подпись к рисунку]

Заметим, что log25 64 = log5 8 — просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

[Подпись к рисунку]

Если кто-то не в курсе, это была настоящая задача из ЕГЭ 🙂

Логарифмическая единица и логарифмический ноль

В заключение приведу два тождества, которые сложно назвать свойствами — скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

  1. log a a = 1 — это . Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
  2. log a 1 = 0 — это . Основание a может быть каким угодно, но если в аргументе стоит единица — логарифм равен нулю! Потому что a 0 = 1 — это прямое следствие из определения.

Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее — и решайте задачи.

Источник

Логарифмы и их свойства

Обычно определение логарифма дают очень сложно и запутанно. Мы постараемся сделать это очень просто и наглядно.

Читайте также:  Можно ли клеща вынуть руками

Для того, чтобы разобраться, что такое логарифм, давайте рассмотрим пример:

Все знакомы, что такое степень числа (если нет, то вам сюда). В таблице приведены различные степени числа 2. Глядя на таблицу, ясно, что, например, число 32 – это 2 в пятой степени, то есть двойка, умноженная на саму себя пять раз.

Теперь при помощи этой таблицы введем понятие логарифма.

Логарифм от числа 32 по основанию 2 (\(log_<2>(32)\)) – это в какую степень нужно возвести двойку, чтобы получить 32. Из таблицы видно, что 2 нужно возвести в пятую степень. Значит наш логарифм равен 5:

Аналогично, глядя в таблицу получим, что:

Естественно, логарифм бывает не только по основанию 2, а по любым основаниям больших 0 и неравных 1. Можете так же создавать таблицы для разных чисел. Но, конечно, со временем вы это будете делать в уме.

Теперь дадим определение логарифма в общем виде:

Логарифмом положительного числа \(b\) по основанию положительно числа \(a\) называется степень \(c\), в которую нужно возвести число \(a\), чтобы получить \(b\)

Будьте внимательны! В первое время обычно путают, что такое основание и то, что стоит под логарифмом (аргумент). Логарифм — это всегда функция, зависящая от двух переменных. Чтобы их не путать, помните определение логарифма – это степень, в которую нужно возвести основание, чтобы получить аргумент.

Но, конечно, вы часто будете сталкиваться не с такими простыми логарифмами, как в примерах с двойкой, а очень часто будет, что логарифм нельзя в уме посчитать. Действительно, что скажете про логарифм пяти по основанию два:

Как его посчитать? При помощи калькулятора. Он нам покажет, что такой логарифм равен иррациональному числу:

Или логарифм шести по основанию 4:

На уроках математики пользоваться калькулятором нельзя, поэтому на экзаменах и контрольных принято оставлять такие логарифмы в виде логарифма – не считая его, это не будет ошибкой!

Но иногда можно столкнуться с заданием, где нужно примерно оценить значение логарифма – это очень просто! Давайте для примера оценим логарифм \(log_<4>(6)\). Необходимо подобрать слева и справа от 6 такие ближайшие числа, логарифм от которых мы сможем посчитать, другими словами, надо найти степени 4-ки ближайшие к 6ке:

$$ log_<4>(4) \lt log_<4>(6) \lt log_<4>(16);$$ $$ 1 \lt log_<4>(6) \lt 2. $$

Значит \(log_<4>(6)\) принадлежите промежутку от 1 до 2:

Как посчитать логарифм

Почему так? Это следует из определения показательной функций. Показательная функция не может быть \(0\). А основание не равно \(1\), потому что тогда логарифм теряет смысл – ведь \(1\) в любой степени это будет \(1\).

При этих ограничениях логарифм существует.

В дальнейшем при решении различных логарифмических уравнений и неравенств вам это пригодится для ОДЗ.

Обратите внимание, что само значение логарифма может быть любым. Это же степень, а степень может быть любой – отрицательной, рациональной, иррациональной и т.д.

Теперь давайте разберем общий алгоритм вычисления логарифмов:

  • Во-первых, постарайтесь представить основание и аргумент (то, что стоит под логарифмом) в виде степеней с одинаковым основанием. Параллельно с этим избавляемся от всех десятичных дробей – переводим их в обыкновенные.
  • Разобраться в какую степень \(x\) нужно возвести основание, чтобы получить аргумент. Когда у вас там и там степени с одинаковым основанием, это сделать довольно просто.
  • \(x\) и будет искомым значением логарифма.
Читайте также:  Желудочный клещ у человека

Давайте разберем на примерах.

Пример 1. Посчитать логарифм \(9\) по основанию \(3\): \(log_<3>(9)\)

  • Сначала представим аргумент и основание в виде степени тройки: $$ 3=3^1, \qquad 9=3^2;$$
  • Теперь надо разобраться в какую степень \(x\) нужно возвести \(3^1\), чтобы получить \(3^2\) $$ (3^1)^x=3^2, $$ $$ 3^<1*x>=3^2, $$ $$ 1*x=2,$$ $$ x=2.$$
  • Вот мы и решили: $$log_<3>(9)=2.$$

Пример 2. Вычислить логарифм \(\frac<1><125>\) по основанию \(5\): \(log_<5>(\frac<1><125>)\)

  • Представим аргумент и основание в виде степени пятерки: $$ 5=5^1, \qquad \frac<1><125>=\frac<1><5^3>=5^<-3>;$$
  • В какую степень \(x\) надо возвести \(5^1\), чтобы получить \(5^<-3>\): $$ (5^1)^x=5^<-3>, $$ $$ 5^<1*x>=5^<-3>,$$ $$1*x=-3,$$ $$x=-3.$$
  • Получили ответ: $$ log_<5>(\frac<1><125>)=-3.$$

Пример 3. Вычислить логарифм \(4\) по основанию \(64\): \(log_<64>(4)\)

  • Представим аргумент и основание в виде степени двойки: $$ 64=2^6, \qquad 4=2^2;$$
  • В какую степень \(x\) надо возвести \(2^6\), чтобы получить \(2^<2>\): $$ (2^6)^x=2^<2>, $$ $$ 2^<6*x>=2^<2>,$$ $$6*x=2,$$ $$x=\frac<2><6>=\frac<1><3>.$$
  • Получили ответ: $$ log_<64>(4)=\frac<1><3>.$$

Пример 4. Вычислить логарифм \(1\) по основанию \(8\): \(log_<8>(1)\)

  • Представим аргумент и основание в виде степени двойки: $$ 8=2^3 \qquad 1=2^0;$$
  • В какую степень \(x\) надо возвести \(2^3\), чтобы получить \(2^<0>\): $$ (2^3)^x=2^<0>, $$ $$ 2^<3*x>=2^<0>,$$ $$3*x=0,$$ $$x=\frac<0><3>=0.$$
  • Получили ответ: $$ log_<8>(1)=0.$$

Пример 5. Вычислить логарифм \(15\) по основанию \(5\): \(log_<5>(15)\)

  • Представим аргумент и основание в виде степени пятерки: $$ 5=5^1 \qquad 15= . ;$$ \(15\) в виде степени пятерки не представляется, поэтому этот логарифм мы не можем посчитать. У него значение будет иррациональное. Оставляем так, как есть: $$ log_<5>(15).$$

Как понять, что некоторое число \(a\) не будет являться степенью другого числа \(b\). Это довольно просто – нужно разложить \(a\) на простые множители.

\(16\) разложили, как произведение четырех двоек, значит \(16\) будет степенью двойки.

Разложив \(48\) на простые множители, видно, что у нас есть два множителя \(2\) и \(3\), значит \(48\) не будет степенью.

Теперь поговорим о наиболее часто встречающихся логарифмах. Для них даже придумали специально названия – десятичный логарифм и натуральный логарифм. Давайте разбираться.

Десятичный логарифм

На самом деле, все просто. Десятичный логарифм – это любой обыкновенный логарифм, но с основанием 10. Обозначается — \(lg(a)\).

Натуральный логарифм

Натуральным логарифмом называется логарифм по основанию \(e\). Обозначение — \(ln(x)\). Что такое \(e\)? Так обозначают экспоненту, число-константу, равную, примерно, \(2,718281828459…\). Это число известно тем, что используется в многих математических законах. Просто запомните, что логарифмы с основанием \(e\) часто встречаются, и поэтому им придумали специальное название – натуральный логарифм.

Натуральные и десятичные логарифмы подчиняются тем же самым свойствам и правилам, что и обыкновенные логарифмы.

У логарифмов есть несколько свойств, по которым можно проводить преобразования и вычисления. Кроме этих свойств, никаких операций с логарифмами делать нельзя.

Свойства логарифмов

Давайте разберем несколько примеров на свойства логарифмов.

Пример 8. Воспользоваться формулой \(3\). Логарифм от произведения – это сумма логарифмов.

Пример 9. Воспользоваться формулой \(4\). Логарифм от частного – это разность логарифмов.

Пример 10. Формула \(5,6\). Свойства степени.

Логично, что будет выполняться и такое соотношение:

Пример 11. Формулы \(7,8\). Переход к другому основанию.

Источник

Оцените статью
Избавляемся от вредителей