- Раскрытие скобок: правила и примеры (7 класс)
- Правила раскрытия скобок
- Если перед скобкой стоит знак плюс, то скобка просто снимается, выражение в ней при этом остается неизменным. Иначе говоря:
- Если перед скобкой стоит знак минус, то при снятии скобки каждый член выражения внутри нее меняет знак на противоположный:
- Если перед скобкой стоит множитель, то каждый член скобки умножается на него, то есть:
- При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй:
- Скобка в скобке
- Математика для блондинок
- Страницы
- четверг, 16 мая 2013 г.
- Как не менять знаки внутри скобок?
- Вынесение общего множителя за скобки
- Понятие вынесения множителя за скобки
- Правило вынесения общего множителя за скобки
- Вынесение минуса за скобки
Раскрытие скобок: правила и примеры (7 класс)
Основная функция скобок – менять порядок действий при вычислениях значений числовых выражений . Например, в числовом выражении \(5·3+7\) сначала будет вычисляться умножение, а потом сложение: \(5·3+7 =15+7=22\). А вот в выражении \(5·(3+7)\) сначала будет вычислено сложение в скобке, и лишь потом умножение: \(5·(3+7)=5·10=50\).
Однако если мы имеем дело с алгебраическим выражением , содержащим переменную — например таким: \(2(x-3)\) – то вычислить значение в скобке не получается, мешает переменная. Поэтому в таком случае скобки «раскрывают», используя для этого соответствующие правила.
Правила раскрытия скобок
Если перед скобкой стоит знак плюс, то скобка просто снимается, выражение в ней при этом остается неизменным. Иначе говоря:
Здесь нужно пояснить, что в математике для сокращения записей принято не писать знак плюс, если он стоит в выражении первым. Например, если мы складываем два положительных числа, к примеру, семь и три, то пишем не \(+7+3\), а просто \(7+3\), несмотря на то, что семерка тоже положительное число. Аналогично если вы видите, например, выражение \((5+x)\) – знайте, что перед скобкой стоит плюс, который не пишут.
Пример. Раскройте скобку и приведите подобные слагаемые: \((x-11)+(2+3x)\).
Решение: \((x-11)+(2+3x)=x-11+2+3x=4x-9\).
Если перед скобкой стоит знак минус, то при снятии скобки каждый член выражения внутри нее меняет знак на противоположный:
Здесь нужно пояснить, что у \(a\), пока оно стояло в скобке, был знак плюс (просто его не писали), и после снятия скобки этот плюс поменялся на минус.
Пример: Упростите выражение \(2x-(-7+x)\).
Решение: внутри скобки два слагаемых: \(-7\) и \(x\), а перед скобкой минус. Значит, знаки поменяются – и семерка теперь будет с плюсом, а икс – с минусом. Раскрываем скобку и приводим подобные слагаемые .
Пример. Раскройте скобку и приведите подобные слагаемые \(5-(3x+2)+(2+3x)\).
Решение: \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).
Если перед скобкой стоит множитель, то каждый член скобки умножается на него, то есть:
Пример. Раскройте скобки \(5(3-x)\).
Решение: В скобке у нас стоят \(3\) и \(-x\), а перед скобкой — пятерка. Значит, каждый член скобки умножается на \(5\) — напоминаю, что знак умножения между числом и скобкой в математике не пишут для сокращения размеров записей.
Пример. Раскройте скобки \(-2(-3x+5)\).
Решение: Как и в предыдущем примере, стоящие в скобке \(-3x\) и \(5\) умножаются на \(-2\).
Осталось рассмотреть последнюю ситуацию.
При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй:
Пример. Раскройте скобки \((2-x)(3x-1)\).
Решение: У нас произведение скобок и его можно раскрыть сразу по формуле выше. Но чтобы не путаться, давайте сделаем всё по шагам.
Шаг 1. Убираем первую скобку — каждый ее член умножаем на скобку вторую:
Шаг 2. Раскрываем произведения скобки на множитель как описано выше:
— сначала первое…
Шаг 3. Теперь перемножаем и приводим подобные слагаемые:
Так подробно расписывать все преобразования совсем необязательно, можно сразу перемножать. Но если вы только учитесь раскрывать скобок – пишите подробно, меньше будет шанс ошибиться.
Примечание ко всему разделу. На самом деле, вам нет необходимости запоминать все четыре правила, достаточно помнить только одно, вот это: \(c(a-b)=ca-cb\) . Почему? Потому что если в него вместо c подставить единицу, получиться правило \((a-b)=a-b\) . А если подставить минус единицу, получим правило \(-(a-b)=-a+b\) . Ну, а если вместо c подставить другую скобку – можно получить последнее правило.
Скобка в скобке
Иногда в практике встречаются задачи со скобками, вложенными внутрь других скобок. Вот пример такого задания: упростить выражение \(7x+2(5-(3x+y))\).
Чтобы успешно решать подобные задания, нужно:
— внимательно разобраться во вложенности скобок – какая в какой находиться;
— раскрывать скобки последовательно, начиная, например, с самой внутренней.
При этом важно при раскрытии одной из скобок не трогать все остальное выражение, просто переписывая его как есть.
Давайте для примера разберем написанное выше задание.
Пример. Раскройте скобки и приведите подобные слагаемые \(7x+2(5-(3x+y))\).
Решение:
Выполнять задание начнем с раскрытия внутренней скобки (той, что внутри). Раскрывая ее, имеем дело только с тем, что к ней непосредственно относиться – это сама скобка и минус перед ней (выделено зеленым). Всё остальное (не выделенное) переписываем также как было.
Теперь раскрываем вторую скобку, внешнюю.
Упрощаем получившееся выражение…
Пример. Раскройте скобки и приведите подобные слагаемые \(-(x+3(2x-1+(x-5)))\).
Решение:
Здесь тройная вложенность скобок. Начинаем с самой внутренней (выделено зеленым). Перед скобкой плюс, так что она просто снимается.
Теперь нужно раскрыть вторую скобку, промежуточную. Но мы перед этим упростим выражение привидением подобный слагаемых в этой второй скобке.
Вот сейчас раскрываем вторую скобку (выделено голубым). Перед скобкой множитель – так что каждый член в скобке умножается на него.
И раскрываем последнюю скобку. Перед скобкой минус – поэтому все знаки меняются на противоположные.
Раскрытие скобок — это базовое умение в математике. Без этого умения невозможно иметь оценку выше тройки в 8 и 9 классе. Поэтому рекомендую хорошо разобраться в этой теме.
Источник
Математика для блондинок
Математика — это очень просто, даже проще, чем мы можем себе представить. Сложной математику делают сами математики.
Страницы
четверг, 16 мая 2013 г.
Как не менять знаки внутри скобок?
Всех нас учат менять знаки при раскрытии скобок или закрывании части выражения в скобки, если перед скобками стоит знак минус. Давайте рассмотрим этот нудный процесс на полуживых примерах.
Перед выражением в скобках стоит знак минус, это значит, что при раскрытии скобок нужно поменять все знаки на противоположные у всех чисел, которые находятся внутри скобок. Этот же пример, но уже без скобок.
11-(2+5-4) = 11-2-5+4 = 9-5+4 = 4+4 = 8
Теперь попробуем взять часть выражения в скобки. Рассмотрим другой пример.
Естественно, вы спросите: «Где же здесь знак минус?!» Не переживайте, сейчас появится.
Я поставил перед скобками знак минус и поменял знаки перед числами внутри скобок. При раскрытии скобок я снова поменял знак на противоположный, поскольку у меня перед скобками стоит знак минус. В итоге результат остался неизменным.
Теперь более заковыристый пример.
Как видите, сплошная головная боль получается, если вдруг перед скобками появляется знак минус. Как не менять знаки внутри скобок? Очень просто — не нужно ставить минус перед скобками. Вот смотрите, как это делается.
17-6+9 = 17+(-6+9) = 17+(3) = 17+3 = 20
Теперь рассмотрим два последних примера под микроскопом. В первом случае я поставил первую скобку после знака минус. Я словно ножом разрезал отрицательное число на две части — знак минус и положительное число. Знак минус оказался перед скобкой, а положительно число — внутри скобок. Посмотрите.
Фактически мы в скобки заключаем положительное число, которое до этого было отрицательным. Изменение знака перед первым числом внутри скобок прошло на полном автопилоте без всякого нашего вмешательства. Такой себе автомат по обрезанию знака минус у чисел. А вот с остальными числами, попадающими в такие скобки, уже возникают проблемы. Знаки у них нужно менять вручную.
Во втором случае я поставил открывающую скобку перед знаком минус. Фактически я заключаю в скобки отрицательное число вместе со знаком минус. Вот как это выглядит первоначально.
Теперь между числом 17 и скобкой нет никакого знака, что в математике подразумевает умножение. Но мне не нужно ничего умножать. Чтобы ответ при решении примера оставался прежним, я ставлю перед скобкой дополнительный знак «плюс».
Вот теперь всё правильно записано. Перед скобками появляется знак полюс и знаки перед числами внутри скобок менять не нужно. Никакого математического преступления я не совершаю, просто грамотно избавляюсь от лишних действий по замене знаков внутри скобок. Почему математики всегда так не делают? Их никто этому не учил. Если этого нет в учебной программе, то и учить вас этому никто не будет. Математику мало знать, нужно ещё уметь нею пользоваться.
Источник
Вынесение общего множителя за скобки
О чем эта статья:
5 класс, 6 класс, 7 класс
Понятие вынесения множителя за скобки
Разложение многочлена на множители — это преобразование многочлена в произведение, которое равно данному многочлену.
Есть несколько способов разложения многочлена на множители. Один из них — вынесение общего множителя за скобки.
Вынести общий множитель за скобки можно в выражениях, которые представляют из себя суммы, в которых каждое слагаемое является произведением, причем в каждом произведении есть один одинаковый для всех множитель. Он так и называется — общий множитель.
Вынесение общего множителя за скобки — это преобразование многочлена в произведение с помощью распределительного свойства умножения. Только в случае вынесения множителя за скобки это свойство применяется справа налево.
Формула вынесения общего множителя за скобки:
Покажем метод вынесения общего множителя за скобки на примере с цифрами:
Определение общего множителя для всех членов многочлена производится пошагово:
- Если у каждого члена есть коэффициент — находим число, на которое делится коэффициент каждого члена, и выносим его за скобки.
- Находим переменные, которые встречаются в каждом члене. Переменные выносятся за скобки в наименьшей встречающейся степени.
- Определяем многочлен, который должен остаться в скобках. При этом многочлен должен иметь столько же членов, сколько было в исходном многочлене.
Если нам дано произведение 6 * 2 и 6 * 5, то мы можем вынести за скобки общий множитель 5. В чем состоит данное преобразование? Мы представляем исходное выражение как произведение общего множителя и выражения в скобках, которое содержит сумму всех исходных слагаемых, кроме общего множителя.
Итак, вынесем общий множитель 5 в 6 * 2 и 6 * 5 и получим 6 * (2 + 5).
Итоговое выражение — это произведение общего множителя 6 на выражение в скобках, которое является суммой исходных слагаемых без 6.
Так и получается: 6 * 2 + 6 * 5 = 6 * (2 + 5).
Правило вынесения общего множителя за скобки
Основное правило вынесения общего множителя за скобки
Чтобы вынести за скобки общий множитель, нужно записать исходное выражение в виде произведения общего множителя и скобок, которые включают в себя исходную сумму без общего множителя.
Алгоритм вынесения общего множителя за скобки:
- Найти наибольший общий делитель коэффициентов всех одночленов, которые входят в многочлен. Он и будет общим числовым множителем.
- Найти общую буквенную часть для всех членов многочлена. При этом выбрать наименьший показатель степени.
- Произведение коэффициента и общей буквенной части, которые мы нашли на первом и втором шагах, является общим множителем, который выносим за скобки.
- Делим каждый член многочлена на вынесенный множитель и полученный результат записываем в скобках.
Важно! В скобках должно быть столько одночленов, сколько их было в многочлене.
Рассмотрим простой пример вынесения. Дано числовое выражение 4 * 7 + 4 * 3 — 4 * 5, которое является суммой трех слагаемых и общего множителя 4. Возьмем за основу выведенное правило и запишем произведение иначе: 4 * (7 + 3 — 5).
Это и есть итог нашего преобразования. Запись всего решения выглядит так:
4 * 7 + 4 * 3 — 4 * 5 = 4 * (7 + 3 — 5).
Определить сразу, какой множитель является общим, получается не всегда. Иногда выражение нужно предварительно преобразовать, заменив числа и выражения тождественно равными им произведениями.
Рассмотрим разложение многочлена на множители методом вынесения за скобки общего множителя на примере многочлена: 12m — 6m — 3m. Ход решения:
Вынесение минуса за скобки
Еще один случай, на котором следует обратить внимание — это вынесение за скобки минуса. Только мы выносим не сам знак, а минус единицу. Часто это помогает упростить выражение и сделать его проще.
Пример 1. Вынести минус за скобки в выражении: -10 + (-1) + (-3)
Чтобы вынести минус за скобки, нужно записать перед скобками минус и в скобках записать все слагаемые с противоположными знаками:
Найдем решение для каждого выражения:
-(10 + 1 + 3) = -(14) = -14
Поэтому между выражениями можно поставить знак равенства, потому что они равны одному и тому же значению:
-10 + (-1) + (-3) = -(10 + 1 + 3)
Пример 2. Вынести минус за скобки в выражении: -3 + 5 + 11
Ставим минус и рядом в скобках записываем выражение с противоположным знаком у каждого слагаемого:
-3 + 5 + 11 = -(3 — 5 — 11)
Как и в прошлом примере, здесь за скобки вынесен не минус, а минус единица.
Подробное решение выглядит так:
Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)
Записаться на марафон
Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)
Источник