Как избавиться от отрицательного показателя степени

Содержание
  1. Отрицательная степень числа
  2. Степень с отрицательным показателем
  3. Действия над степенями с отрицательными показателями
  4. Отрицательная степень
  5. Как возвести число в отрицательную степень
  6. Как найти 10 в минус 1 степени
  7. Как возвести в отрицательную степень дробь
  8. Как возвести отрицательное число в отрицательную степень
  9. Как возвести отрицательную дробь в отрицательную степень
  10. Свойства отрицательной степени
  11. Примеры решений заданий с отрицательной степенью
  12. Колягин 9 класс. Задание № 1
  13. Колягин 9 класс. Задание № 5
  14. как избавиться от минуса в степени
  15. Где можно решить любую задачу по математике, а так же как избавиться от минуса в степени Онлайн?
  16. Отрицательная степень
  17. Что такое степень числа
  18. Таблица степеней
  19. Свойства степеней
  20. Свойство 1: произведение степеней
  21. Свойство 2: частное степеней
  22. Свойство 3: возведение степени в квадрат
  23. Свойство 4: степень произведения
  24. Свойство 5: степень частного
  25. Степень с показателем 0
  26. Степень с отрицательным показателем
  27. Действия с отрицательными степенями
  28. Умножение отрицательных степеней
  29. Деление отрицательных степеней
  30. Возведение дроби в отрицательную степень
  31. Возведение произведения в отрицательную степень

Отрицательная степень числа

Степень с отрицательным показателем

Число с отрицательным показателем степени равно дроби, числителем которой является единица, а знаменателем данное число с положительным показателем.

d -c = 1 ; 7 -5 = 1 ; a -5 = 1 .
d c 7 5 a 5

Чтобы разобраться, почему число в отрицательной степени равно дроби, надо вспомнить правило деления степеней с одинаковыми основаниями:

При делении степеней с одинаковыми основаниями из показателя степени делимого вычитают показатель степени делителя.

Следовательно, если степень делимого будет меньше степени делителя, то в результате получится число с отрицательной степенью:

Если записать деление в виде дроби, то при сокращении в числителе останется 1, а в знаменателе число будет иметь положительную степень:

a 5 = 1 .
a 8 a 3
a -3 = 1 .
a 3

Пример 1. Замените дробь степенью с отрицательным показателем:

1 .
x 2
1 = x -2 .
x 2

Пример 2. Представьте в виде степени с отрицательным показателем:

1 .
(m + n) 2
1 = (m + n) -2 .
(m + n) 2

Действия над степенями с отрицательными показателями

При умножении отрицательных степеней с одинаковыми основаниями показатели степеней складываются:

При делении отрицательных степеней с одинаковыми основаниями из показателя степени делимого вычитается показатель делителя:

Чтобы возвести произведение в отрицательную степень, надо возвести в эту степень каждый сомножитель отдельно:

Чтобы возвести дробь в отрицательную степень, надо возвести в эту степень отдельно числитель и знаменатель:

При возведении одной степени (положительной или отрицательной) в степень (положительную или отрицательную) показатели степеней перемножаются:

Источник

Отрицательная степень

Прежде чем перейти к изучению определения «отрицательная степень» рекомендуем повторно прочитать урок «Степень» и «Свойства степеней».

Необходимо уверенно понимать, что такое положительная степень числа и уверенно использовать её свойства в решении примеров.

Как возвести число в отрицательную степень

Чтобы возвести число в отрицательную степень нужно:

  • «перевернуть» число. Записать его в виде дроби с единицой наверху (в числителе) и с исходным числом в степени внизу;
  • заменить отрицательную степень на положительную ;
  • возвести число в положительную степень.

Общая формула возведения в отрицательную степень выглядит следующим образом.

a −n =

1
a n

,где a ≠ 0, n ∈ z ( n принадлежит целым числам).

Примеры возведения в отрицательную степень.

  • 6 −2 =
    1
    6 2

    =

    1
    36
  • (−3) −3 =
    1
    (−3) 3

    =

    1
    −27

    = −

    1
    27
  • 0,2 −2 =
    1
    0,2 2

    =

    1
    0,04

Любое число в нулевой степени — единица.

Примеры возведения в нулевую степень.

  • (
    2
    3

    ) 0 = 1

  • (−5) 0 = 1

Как найти 10 в минус 1 степени

В уроке 8 класса «Стандартный вид числа» мы уже сталкивались с записью:

Теперь, зная определение отрицательной степени, давайте разберемся, почему « 10 » в минус первой степени равно « 0,1 ».

Возведем « 10 −1 » по правилам отрицательной степени. Перевернем « 10 » и запишем её в виде дроби «

1
10

» и заменим отрицательную степень « −1 » на
положительную степень « 1 ».

Возведем « 10 » в « 1 » степень. Помним, что любое число в первой степени равно самому числу.

Теперь по определению десятичной дроби запишем обыкновенную дробь в виде десятичной.

10 −1 =

1
10 1

=

1
10

= 0,1

По такому же принципу можно найти « 10 » в минус второй, третьей и т.д.

Для упрощения перевода « 10 » в минус первую, вторую и т.д степени, нужно запомнить правило:
«Количество нулей после запятой равно положительному значению степени минус один ».

Проверим правило выше для « 10 −2 ».

Т.к. у нас степень « −2 », значит, будет всего один ноль (положительное значение степени « 2 − 1 = 1 ». Сразу после запятой ставим один ноль и за ним « 1 ».

Рассмотрим « 10 −1 ».

Т.к. у нас степень « −1 », значит, нулей после запятой не будет (положительное значение степени « 1 − 1 = 0 ». Сразу после запятой ставим « 1 ».

То же самое правило работает и для « 10 −12 ». При переводе в десятичную дробь будет « 12 − 1 = 11 » нулей и « 1 » в конце.

Как возвести в отрицательную степень дробь

Чтобы возвести дробь в отрицательную степень нужно:

  • «перевернуть» дробь;
  • заменить отрицательную степень на положительную ;
  • возвести дробь в положительную степень.

Пример. Требуется возвести в отрицательную степень дробь.

Перевернем дробь «

10
3

» и заменим отрицательную степень « −3 » на положительную « 3 ».

Возведем дробь в положительную степень по правилу возведения дроби в положительную степень. Т.е. возведем и числитель « 3 », и знаменатель « 10 » в третью степень.

(

10
3

) −3 = (

3
10

) 3 =

3 3
10 3

=

27
1000

Для более грамотного ответа запишем полученный результат в виде десятичной дроби.

(

10
3

) −3 = (

3
10

) 3 =

3 3
10 3

=

27
1000

= 0,027

Как возвести отрицательное число в отрицательную степень

Как и при возведении отрицательного числа в положительную степень, в первую очередь необходимо определить конечный знак результата возведения в степень. Вспомним основные правила еще раз.

Отрицательное число, возведённое в чётную степень, — число положительное .

Отрицательное число, возведённое в нечётную степень, — число отрицательное .

Перевернем число « −5 » и заменим отрицательную степень « −2 »
на положительную « 2 ».

Так как степень « 2 » — четная , значит, результат возведения в степень будет положительный . Поэтому убираем знак минуса при раскрытии скобок.

Далее откроем скобки и возведем во вторую степень и числитель « 1 »,
и знаменатель « 5 ».

(−5) −2 = (−

1
5

) 2 =

1 2
5 2

=

1
25

Как возвести отрицательную дробь в отрицательную степень

Конечный знак результата возведения в степень отрицательной дроби определяется по тем же правилам, что и для целого отрицательного числа.

Отрицательная дробь, возведённая в чётную степень, — дробь положительная .

Отрицательная дробь, возведённая в нечётную степень, — дробь отрицательная .

Разберемся на примере. Задание: возвести отрицательную дробь « (−

2
3

) » в « −3 » степень.

По правилу возведения дроби в отрицательную степень перевернем дробь и заменим отрицательную степень « −3 » на положительную « 3 ».

Теперь определим конечный знак результата возведения в « 3 » степень.

Степень « 3 » — нечетная , значит, по правилу возведения отрицательного числа в степень дробь останется отрицательной .

Нам остается только раскрыть скобки и возвести в степень и числитель « 3 », и знаменатель « 2 » в третью степень.

(−

2
3

) −3 = (−

3
2

) 3 = −

3 3
2 3

= −

27
8

Для окончательного ответа выделим целую часть из дроби.

(−

2
3

) −3 = (−

3
2

) 3 = −

3 3
2 3

= −

27
8

= − 3

3
8

Рассмотрим другой пример возведения отрицательной дроби в отрицательную степень.

Правило возведения отрицательного числа в степень гласит: если степень четная , значит, результат возведения будет положительным .

(−

9
11

) −2 = (−

11
9

) 2 =

11 2
9 2

=

121
81

= 1

40
81

Свойства отрицательной степени

Все свойства степени, которые используются для положительной степени, точно также применяются и для отрицательной степени.

В этом уроке мы не будем повторно подробно разбирать каждое свойство степени, но еще раз приведем основные формулы свойств степени и покажем примеры их использования.

Запомните!

  • a m · a n = a m + n
  • a m
    a n

    = a m − n

  • (a n ) m = a n · m
  • (a · b) n = a n · b n

Примеры решений заданий с отрицательной
степенью

Колягин 9 класс. Задание № 1

Представить в виде степени.

2) a 6 · b 6 = (ab) 6

Колягин 9 класс. Задание № 5

Записать в виде степени с отрицательным числом.

Источник

как избавиться от минуса в степени

Вы искали как избавиться от минуса в степени? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и как избавиться от отрицательной степени, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «как избавиться от минуса в степени».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как как избавиться от минуса в степени,как избавиться от отрицательной степени. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и как избавиться от минуса в степени. Просто введите задачу в окошко и нажмите «решить» здесь (например, как избавиться от минуса в степени).

Где можно решить любую задачу по математике, а так же как избавиться от минуса в степени Онлайн?

Решить задачу как избавиться от минуса в степени вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Источник

Отрицательная степень

О чем эта статья:

7 класс, 8 класс

Что такое степень числа

В учебниках по математике можно встретить такое определение:

«Степенью n числа а является произведение множителей величиной а n раз подряд»

Например, a n — степень, где:

  • a — основание степени,
  • n — показатель степени.

Читается такое выражение как a в степени n.

Если говорить проще, то степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить данное число (основание степени) само на себя.

А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например, число 2 в третью степень, то она решается довольно просто:

2 3 = 2 · 2 · 2, где:

  • 2 — основание степени,
  • 3 — показатель степени.

Таблица степеней

Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3).

Свойства степеней

Степень с натуральным показателем в математике имеет несколько важных свойств, которые позволяют упрощать вычисления. Всего их пять штук — ниже мы их рассмотрим.

Свойство 1: произведение степеней

При умножении степеней с одинаковыми основаниями, основание мы оставляем без изменений, а показатели степеней складываем:

a m · a n = a m + n

  • a — основание степени.
  • m, n — показатели степени, любые натуральные числа.

Свойство 2: частное степеней

Когда мы делим степени с одинаковыми основаниями, то основание остается без изменений, а из показателя степени делимого вычитают показатель степени делителя.

  • a — любое число, не равное нулю.
  • m, n — любые натуральные числа, такие, что m > n

Свойство 3: возведение степени в квадрат

Когда возводим степень в степень, то основание степени остается неизмененным, а показатели степеней умножаются друг на друга.

  • a — основание степени (не равное нулю).
  • m, n — показатели степени, натуральное число.

Свойство 4: степень произведения

При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

(a · b) n = a n · b n

  • a, b — основание степени (не равное нулю).
  • n — показатели степени, натуральное число.

Свойство 5: степень частного

Чтобы возвести в степень частное, можно возвести в эту степень сначала делимое, потом делитель, и первый результат разделить на второй.

(a : b) n = a n : b n

  • a, b — основание степени (не равное нулю), любые рациональные числа, b ≠ 0.
  • n — показатель степени, натуральное число.

Степень с показателем 0

Любое целое a ≠ 0 в степени 0 равно 1.

Выражение 0 в степени 0 многие математики считают лишенным смысла, так график функции f (x, у) = xy прерывается в точке (0; 0).

Степень с отрицательным показателем

Число в минусовой степени равно дроби, числителем которой является единица, а знаменателем данное число с положительным показателем:

К примеру, 4 в минус 2 степени — это 1/4 2 , 2 в минус 3 степени — это 1/2 3 , 3 в минус 1 степени — это 1/3, 10 в минус первой степени — это 1/10 или 0,1.

Степени с отрицательным показателям помогают компактно записывать крайне малые или постоянно уменьшающиеся величины. Например, одну миллиардную долю (0, 000 000 001) можно записать как 10 в минус 9 степени (10 -9 ). В школьной программе такие величины — редкость: чаще всего используют 10 в минус 1 степени или 2 в минус 1 степени.

Чтобы разобраться, как возводить число в отрицательную степень, вспомним правило деления степеней с одинаковыми основаниями.

Деление степеней с одинаковыми основаниями, но разными показателями осуществляется по следующей формуле: показатели отнимаются, а основание остается неизменным.

Поэтому если степень делимого будет меньше степени делителя, то в результате получится число с отрицательной степенью:

a 3 : a 6 =a 3 — 6 = a -3

Если записать деление в виде дроби, то при сокращении в числителе останется 1, а в знаменателе число будет иметь положительную степень:

Действия с отрицательными степенями

Умножение отрицательных степеней

При умножении отрицательных степеней с одинаковыми основаниями показатели степеней складываются, так же как и при умножении положительных степеней:

a m · a n = a m + n

Деление отрицательных степеней

При делении отрицательных степеней с одинаковыми основаниями из показателя степени делимого вычитается показатель делителя, так же как и при делении положительных степеней:

Возведение дроби в отрицательную степень

Чтобы возвести дробь в отрицательную степень, надо возвести в эту степень отдельно числитель и знаменатель:

Возведение произведения в отрицательную степень

Чтобы возвести произведение в отрицательную степень, необходимо возвести в эту степень каждый множитель произведения отдельно:

Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

Записаться на марафон

Бесплатный марафон: как самому создавать игры, а не только играть в них (◕ᴗ◕)

Источник

Читайте также:  С бианки как домой добираться муравей
Оцените статью
Избавляемся от вредителей