- Калькулятор дробей
- Как перевести смешанную дробь в обыкновенную
- Как перевести обыкновенную дробь в смешанную
- Как перевести обыкновенную дробь в десятичную
- Как перевести десятичную дробь в обыкновенную или смешанную
- Как перевести дробь в проценты
- Как перевести проценты в дробь
- Сложение дробей
- Вычитание дробей
- Умножение дробей
- Деление дробей
- Что такое числовая дробь
- Основное свойство дроби
- Неправильные дроби. Выделение целой части
- Переход к неправильной дроби
- Вынесение минуса за знак дроби
- Как вычитать дробь из целого числа
- Вычитание дробей
- Вычитание дробей с одинаковыми знаменателями
- Вычитание правильной дроби из единицы
- Вычитание правильной дроби из целого числа
- Вычитание смешанных чисел
- Первый случай вычитания смешанных чисел
- Второй случай вычитания смешанных чисел
- Третий случай вычитания смешанных чисел
Калькулятор дробей
Как перевести смешанную дробь в обыкновенную
Для того, чтобы перевести смешанную дробь в обыкновенную, необходимо к числителю дроби прибавить произведение целой части и знаменателя: i n d = i · d + n d
5 3 4 = 5 · 4 + 3 4 = 23 4
Как перевести обыкновенную дробь в смешанную
Для того, чтобы перевести обыкновенную дробь в смешанную, необходимо:
- Поделить числитель дроби на её знаменатель
- Результат от деления будет являться целой частью
- Остаток отделения будет являться числителем
Как перевести обыкновенную дробь в десятичную
Для того, чтобы перевести обыкновенную дробь в десятичную, нужно разделить её числитель на знаменатель.
Как перевести десятичную дробь в обыкновенную или смешанную
Для того, чтобы перевести десятичную дробь в обыкновенную, необходимо:
- Записать дробь в виде десятичная дробь 1
- Умножать числитель и знаменатель на 10 до тех пор, пока числитель не станет целым числом.
- Найти наибольший общий делитель и сократить дробь.
Например, переведем 0.36 в обыкновенную дробь:
- Записываем дробь в виде: 0.36 1
- Умножаем на 10 два раза, получим 36 100
- Сокращаем дробь 36 100 = 9 25
Как перевести дробь в проценты
Для того, чтобы перевести обыкновенную или смешанную дробь в проценты, необходимо перевести её в десятичную дробь и умножить на 100.
Как перевести проценты в дробь
Для того, чтобы перевести проценты в дробь, необходимо получить из процентов десятичную дробь (разделив на 100), затем полученную десятичную дробь перевести в обыкновенную.
Сложение дробей
Алгоритм действий при сложении двух дробей такой:
- Перевести смешанные дроби в обыкновенные (избавиться от целой части).
- Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
- Выполнить сложение дробей путем сложения их числителей.
- Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
- Если числитель итоговой дроби больше знаменателя, то выделить целую часть.
Вычитание дробей
Алгоритм действий при вычитании двух дробей:
- Перевести смешанные дроби в обыкновенные (избавиться от целой части).
- Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
- Вычесть одну дробь из другой, путем вычитания числителя второй дроби из числителя первой.
- Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
- Если числитель итоговой дроби больше знаменателя, то выделить целую часть.
Умножение дробей
Алгоритм действий при умножении двух дробей:
- Перевести смешанные дроби в обыкновенные (избавиться от целой части).
- Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
- Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
- Если числитель итоговой дроби больше знаменателя, то выделить целую часть.
Деление дробей
Алгоритм действий при делении двух дробей:
- Перевести смешанные дроби в обыкновенные (избавиться от целой части).
- Чтобы произвести деление дробей, нужно преобразовать вторую дробь, поменяв местами её числитель и знаменатель, а затем произвести умножение дробей.
- Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
- Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
- Если числитель итоговой дроби больше знаменателя, то выделить целую часть.
Источник
Что такое числовая дробь
Хотите почувствовать себя сапером? Тогда этот урок — для вас! Потому что сейчас мы будем изучать дроби — это такие простые и безобидные математические объекты, которые по способности «выносить мозг» превосходят весь остальной курс алгебры.
Главная опасность дробей состоит в том, что они встречаются в реальной жизни. Этим они отличаются, например, от многочленов и логарифмов, которые можно пройти и спокойно забыть после экзамена. Поэтому материал, изложенный в данном уроке, без преувеличения можно назвать взрывоопасным.
(или просто дробь) — это пара целых чисел, записанных через косую или горизонтальную черту.
Дроби, записанные через горизонтальную черту:
Те же самые дроби, записанные через косую черту:
5/7; 9/(−30); 64/11; (−1)/4; 12/1.
Обычно дроби записываются через горизонтальную черту — так с ними проще работать, да и выглядят они лучше. Число, записанное сверху, называется числителем дроби, а записанное снизу — знаменателем.
Любое целое число можно представить в виде дроби со знаменателем 1. получилась дробь из приведенного выше примера.
Вообще, в числитель и знаменатель дроби можно поставить любое целое число. Единственное ограничение — знаменатель должен быть отличен от нуля. Вспомните старое доброе правило: «На ноль делить нельзя!»
Если в знаменателе все-таки стоит ноль, дробь называется неопределенной. Такая запись не имеет смысла и не может участвовать в вычислениях.
Основное свойство дроби
Дроби a / b и c / d называются ,
Из этого определения следует, что одну и ту же дробь можно записать по-разному. Например, , поскольку 1 · 4 = 2 · 2. Разумеется, существует множество дробей, которые не равны друг другу. Например, , поскольку 1 · 4 ≠ 3 · 5.
Возникает резонный вопрос: как найти все дроби, равные данной? Ответ дадим в форме определения:
— числитель и знаменатель можно умножать на одно и то же число, отличное от нуля. При этом получится дробь, равная данной.
Это очень важное свойство — запомните его. С помощью основного свойства дроби можно упрощать и сокращать многие выражения. В будущем оно постоянно будет «всплывать» в виде различных свойств и теорем.
Неправильные дроби. Выделение целой части
Если числитель меньше знаменателя, такая дробь называется правильной. В противном случае (т.е. когда числитель больше или хотя бы равен знаменателю) дробь называется неправильной, и в ней можно выделить целую часть.
Целая часть записывается крупным числом спереди перед дробью и выглядит так (отмечена красным):
Чтобы выделить целую часть в неправильной дроби, надо выполнить три простых шага:
- Найдите, сколько раз знаменатель помещается в числителе. Другими словами, найдите максимальное целое число, которое при умножении на знаменатель все равно будет меньше числителя (в крайнем случае — равно). Это число и будет целой частью, поэтому записываем его спереди;
- Умножьте знаменатель на целую часть, найденную в предыдущем шаге, а результат вычтите из числителя. Полученный «огрызок» называется остатком от деления, он всегда будет положительным (в крайнем случае — ноль). Записываем его в числитель новой дроби;
- Знаменатель переписываем без изменений.
Ну как, сложно? На первый взгляд, может быть и сложно. Но стоит немного потренироваться — и вы будете делать это почти устно. А пока взгляните на примеры:
Задача. Выделите целую часть в указанных дробях:
Во всех примерах целая часть выделена красным цветом, а остаток от деления — зеленым.
Обратите внимание на последнюю дробь, где остаток от деления оказался равным нулю. Получается, что числитель полностью разделился на знаменатель. Это вполне логично, ведь 24 : 6 = 4 — суровый факт из таблицы умножения.
Если все делать правильно, числитель новой дроби обязательно будет меньше знаменателя, т.е. дробь станет правильной. Отмечу также, что лучше выделять целую часть в самом конце задачи, перед записью ответа. Иначе можно значительно усложнить вычисления.
Переход к неправильной дроби
Существует и обратная операция, когда мы избавляемся от целой части. Она называется переходом к неправильной дроби и встречается намного чаще, поскольку работать с неправильными дробями значительно проще.
Переход к неправильной дроби также выполняется в три шага:
- Умножить целую часть на знаменатель. В результате могут получаться довольно большие числа, но нас это не должно смущать;
- Прибавить полученное число к числителю исходной дроби. Результат записать в числитель неправильной дроби;
- Переписать знаменатель — опять же, без изменений.
Вот конкретные примеры:
Задача. Переведите в неправильную дробь:
Для наглядности целая часть снова выделена красным цветом, а числитель исходной дроби — зеленым.
Вынесение минуса за знак дроби
Рассмотрим случай, когда в числителе или знаменателе дроби стоит отрицательное число. Например:
В принципе, ничего криминального в этом нет. Однако работать с такими дробями бывает неудобно. Поэтому в математике принято выносить минусы за знак дроби.
Сделать это очень просто, если вспомнить правила:
- «Плюс на минус дает минус». Поэтому если в числителе стоит отрицательное число, а в знаменателе — положительное (или наоборот), смело зачеркиваем минус и ставим его перед всей дробью;
- «Минус на минус дает плюс». Когда минус стоит и в числителе, и в знаменателе, просто зачеркиваем их — никаких дополнительных действий не требуется.
Разумеется, эти правила можно применять и в обратном направлении, т.е. можно вносить минус под знак дроби (чаще всего — в числитель).
Случай «плюс на плюс» мы намеренно не рассматриваем — с ним, думаю, и так все понятно. Лучше посмотрим, как эти правила работают на практике:
Задача. Вынесите минусы из четырех дробей, записанных выше.
Обратите внимание на последнюю дробь: перед ней уже стоит знак минус. Однако он «сжигается» по правилу «минус на минус дает плюс».
Также не стоит перемещать минусы в дробях с выделенной целой частью. Эти дроби сначала переводят в неправильные — и лишь затем приступают к вычислениям.
Источник
Как вычитать дробь из целого числа
Вначале рассмотрим, как обыкновенную дробь вычесть из единицы.
Мы знаем, что число 1 мы можем представить в виде дроби с любым знаменателем. Причем, у этой дроби и числитель, и знаменатель будут одинаковые числа.
Поэтому, чтобы из 1 вычесть 2/5, надо 1 представить как 5/5, т.е. с таким же знаменателем, как и вычитаемая дробь. А затем выполнить действие: 5/5 – 2/5 = 3/5, значит, 1 – 2/5 = 3/5
Как вычесть дробь из целого числа, отличного от 1?
Вычитать можно несколькими способами.
1 способ:
1) представим число 5 в виде дробь: 5/1, получится 5/1 – 3/4;
2) 5/1 и 3/4 – дроби с разными знаменателями, поэтому приводим в общему знаменателю (см. статью здесь): 20/4 и 3/4;
3) выполняем вычитание: 20/4 – 3/4 = 17/4;
4) 17/4 – это неправильная дробь, поэтому переводим в смешанное число: 17/4 = 4 ¼
5) Итак: 5 – 3/4 = 4 ¼
2 способ:
1) мы уже умеем вычитать дробь из единицы, поэтому из нашего числа 5 занимаем единицу, остается 4 целых;
2) а из единицы вычитаем 3/4 = 1/4;
3) к 4 целым прибавляем 1/4, получаем 4 ¼
Для работы с дробями – выбираем удобный для себя способ!
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 5 / 5. Количество оценок: 65
Источник
Вычитание дробей
При вычитании дробей, как и при сложении, могут встретиться несколько случаев.
Вычитание дробей с одинаковыми знаменателями
При вычитании дробей с одинаковыми знаменателями от числителя уменьшаемого (первой дроби) отнимают числитель вычитаемого (второй дроби), а знаменатель оставляют прежним.
Прежде чем записать конечный ответ, проверьте, нельзя ли сократить полученную дробь.
В буквенном виде правило вычитания дробей с одинаковыми знаменателями записывают так:
Вычитание правильной дроби из единицы
Когда нужно вычесть из единицы правильную дробь, единицу представляют в виде неправильной дроби, знаменатель которой, равен знаменателю вычитаемой дроби.
Знаменатель вычитаемой дроби равен 7 , значит, единицу представляют как неправильную дробь
7 |
7 |
и вычитают по правилу вычитания дробей с одинаковыми знаменателями.
Вычитание правильной дроби из целого числа
Чтобы из целого числа вычесть правильную дробь нужно представить это натуральное число в виде смешанного числа.
Для этого занимаем единицу в натуральном числе и представляем её в виде неправильной дроби, знаменатель которой равен знаменателю вычитаемой дроби.
В примере единицу мы заменили неправильной дробью
7 |
7 |
и вместо 3 записали смешанное число и от дробной части отняли дробь.
Вычитание смешанных чисел
При вычитании смешанных чисел отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.
При подобных расчётах могут встретиться разные случаи.
Первый случай вычитания смешанных чисел
У дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из чего вычитаем) больше или равен числителю дробной части вычитаемого (что вычитаем).
Второй случай вычитания смешанных чисел
У дробных частей разные знаменатели.
В этом случае вначале нужно привести к общему знаменателю дробные части, а затем выполнить вычитание целой части из целой, а дробной из дробной.
Третий случай вычитания смешанных чисел
Дробная часть уменьшаемого меньше дробной части вычитаемого.
Так как у дробных частей разные знаменатели, то как и во втором случае, вначале приведём обыкновенные дроби к общему знаменателю.
Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого.
Сложим полученную неправильную дробь
18 |
18 |
и дробную часть уменьшаемого и получим:
Все рассмотренные случаи можно описать с помощью правил вычитания смешанных чисел.
- Привести дробные части уменьшаемого и вычитаемого к наименьшему общему знаменателю.
- Если дробная часть уменьшаемого меньше дробной части вычитаемого, то занимаем у целой части уменьшаемого единицу. Эту единицу превращаем в неправильную дробь с одинаковым числителем и знаменателем равными наименьшему общему знаменателю.
- Прибавляем полученную неправильную дробь к дробной части уменьшаемого.
- Вычитаем из целой части целую, а из дробной — дробную.
- Проверяем, нельзя ли сократить и выделить целую часть в конечной дроби.
Источник