- Как вынести из-под корня
- № 15 .1 (в) Мордкович 8 класс
- Как вынести множитель из корня с одним числом
- № 524 (1) Мерзляк 8 класс
- № 524 (4) Мерзляк 8 класс
- № 524 (5) Мерзляк 8 класс
- № 524 (6) Мерзляк 8 класс
- № 524 (8) Мерзляк 8 класс
- № 526 (6) Мерзляк 8 класс
- № 526 (8) Мерзляк 8 класс
- Как вынести десятичную дробь из-под знака корня
- № 524 (10) Мерзляк 8 класс
- Примеры вынесения десятичной дроби из-под знака квадратного корня
- № 524 (9) Мерзляк 8 класс
- № 526 (7) Мерзляк 8 класс
- Как вынести букву из-под знака корня
- № 347 (2, 4) Колягин (Алимов) 8 класс
- № 348 (2) Колягин (Алимов) 8 класс
- № 549 (2) Мерзляк 8 класс
- Корень степени N: основные определения
- Зачем вообще нужны корни?
- Почему нужны два определения?
- Основные свойства и ограничения
- Замечание по поводу порядка действий
- Вынесение минуса из-под знака корня
- Арифметический корень
- Алгебраический корень: для тех, кто хочет знать больше
Как вынести из-под корня
Вынесение множителя из-под знака корня — это извлечение корня из одного из множителей (числа или буквы), которые находятся под корнем.
Говорят: «Число « 25 » вынесли из-под знака корня».
Рассмотрим подробнее пример вынесения множителя из-под знака корня.
№ 15 .1 (в) Мордкович 8 класс
Вынесите множитель из-под знака корня:
Извлечь квадратный корень из « √ 5 » целым числом не получится, поэтому нам остается только извлечь квадратный корень из « √ 16 ».
Обязательно выучите таблицу квадратов чисел от « 1 » до « 15 » и таблицу часто используемых квадратных корней.
Вспомним, чему равен квадрат числа четыре?
Решение примера выше записываем следующим образом.
√ 16 · 5 = √ 16 · √ 5 = 4 · √ 5
Действие выше называют вынесением множителя из-под знака корня. Говорят: «Число « 16 » вынесли из-под знака корня, получив число « 4 ».
Выносить из-под знака корня можно, только если все действия под знаком корня — умножение .
Примеры правильного и неправильного вынесения из-под знака корня:
- √ 144 · 2 = √ 144 · √ 2 = 12 √ 2 (верно) . Под знаком квадратного корня только действие умножения;
- √ 16 + 5 ≠ 4 + √ 5 (неверно) . Нельзя выносить « 16 » из-под знака корня, так как под знаком корня сложение ;
- √ 25 − 3 ≠ 5 − √ 3 (неверно) . Нельзя выносить из-под знака корня « 25 », так как под знаком корня вычитание ;
- √ 16 ·2 + 3 ≠ 4 √ 2 + 3 (неверно) . Нельзя выносить « 16 » из-под знака корня, так как под знаком корня есть сложение (должно быть только умножение ).
Как вынести множитель из корня с одним числом
Рассмотрим пример, когда под корнем только одно число и по условию задания требуется вынести множитель из-под знака корня.
№ 524 (1) Мерзляк 8 класс
Вынесите множитель из-под знака корня:
Извлечь целое число из квадратного корня « √ 8 » нельзя, так как нет такого целого числа, которое в квадрате давало бы « 8 ».
Обязательно выучите таблицу квадратов чисел от « 1 » до « 15 » и таблицу часто используемых квадратных корней.
Подумаем, на какие множители можно разложить число « 8 », чтобы была возможность вынести один из множителей из-под знака корня. Вспоминаем таблицу умножения.
Число « 8 » — это произведение
« 8 = 4 · 2 ». Теперь можем вынести « 4 » из-под знака корня.
√ 8 = √ 4 · 2 = √ 4 · √ 2 = 2 √ 2
Разберем другие примеры вынесения множителя из-под знака квадратного корня
№ 524 (4) Мерзляк 8 класс
Вынесите множитель из-под знака корня:
Зададим себе вопрос: «На какие множители нужно разложить « 54 », чтобы была возможность вынести один из множителей из-под знака квадратного корня?».
Видим число « 9 ». Подходит, так как « √ 9 = 3 ».
Завершим решение примера вынесением из-под знака корня числа « 9 ».
√ 54 = √ 9 · 6 = 3 √ 6
Извлечь « √ 6 » целым числом невозможно. Поэтому ответ оставляем в таком виде.
№ 524 (5) Мерзляк 8 класс
Вынесите множитель из-под знака корня:
В примерах с числами, которые делятся на « 10, 100, 1000… » и так далее, стоит сразу попробовать разложить число на « 10, 100, 1000… » и второй множитель.
То есть число « 490 » можно разложить на « 490 = 49 · 10 ». Из « 49 » можно извлечь квадратный корень.
Теперь можно вынести « 49 » из-под знака корня.
√ 490 = √ 49 · 10 = 7 √ 10
№ 524 (6) Мерзляк 8 класс
№ 524 (8) Мерзляк 8 класс
√ 108 = √ 54 · 2 = √ 9 · 6 · 2 =
= 3 √ 6 · 2 = 3 √ 12 = 3 √ 4 · 3 =
№ 526 (6) Мерзляк 8 класс
0,4 · √ 250 = 0,4 · √ 25 · 10 =
Завершим пример, умножив десятичную дробь « 0,4 » на « 5 » по правилу умножения десятичной дроби на число.
0,4 · √ 250 = 0,4 · √ 25 · 10 =
= 0,4 · 5 √ 10 = 2 √ 10
№ 526 (8) Мерзляк 8 класс
4 |
9 |
· √ 63 =
4 |
9 |
· √ 9 · 7 =
4 |
9 |
· 3 √ 7 = …
Умножим дробь «
4 |
9 |
» на число « 3 », которое вынесли из-под знака квадратного корня. Используем правило умножения обыкновенной дроби на число.
4 |
9 |
· √ 63 =
4 |
9 |
· √ 9 · 7 =
4 |
9 |
· 3 √ 7 =
=
4 · 3 |
9 |
· √ 7 =
4 · 3 |
9 3 |
· √ 7 =
=
4 |
3 |
· √ 7 = …
Чтобы дать окончательный ответ, выделим целую часть неправильной дроби «
4 |
3 |
».
4 |
9 |
· √ 63 =
4 |
9 |
· √ 9 · 7 =
4 |
9 |
· 3 √ 7 =
=
4 · 3 |
9 |
· √ 7 =
4 · 3 |
9 3 |
· √ 7 =
4 |
3 |
· √ 7 =
= 1
1 |
3 |
· √ 7
Как вынести десятичную дробь из-под знака корня
В уроке «Как извлечь квадратный корень из дроби» мы разбирали, каким образом извлечь квадратный корень из десятичной дроби. Например, извлечение квадратного корня из десятичной дроби « √ 0,25 ».
√ 0,25 = 0,5 , так как
0,5 2 = 0,5 · 0,5 = 0,25
Тот же самый метод используется при вынесении десятичной дроби из-под знака корня.
№ 524 (10) Мерзляк 8 класс
Вынесите множитель из-под знака корня:
Разложим десятичную дробь на произведение множителей, чтобы потом была возможность вынести один из множителей из-под знака корня.
Подберем десятичную дробь, на которую делится « 0,48 », из которой потом можно извлечь квадратный корень.
Например, « 0,16 ». Десятичная дробь « 0,48 » делится на « 0,16 » нацело.
Извлечь квадратный корень из « √ 0,16 » по правилу нахождения квадратного корня из десятичной дроби.
Завершим пример вынесением « 0,16 » из-под знака корня.
Примеры вынесения десятичной дроби из-под знака квадратного корня
№ 524 (9) Мерзляк 8 класс
Вынесите множитель из-под знака корня:
№ 526 (7) Мерзляк 8 класс
Вынесите множитель из-под знака корня:
−2 · √ 0,18 = −2 · √ 0,09 · 2 =
= −2 · 0,3 √ 2 = −0,6 √ 2
Как вынести букву из-под знака корня
При вынесении из-под знака квадратного корня множителя в степени (буквы или числа) степень делится на « 2 ».
- √ a 2 = a
2 2 = a 1 = a , гдe a ≥ 0
- √ y 4 = y
4 2 = y 2 , гдe y ≥ 0
- √ 12 4 = 12
4 2 = 12 2 = 144
- √ x 6 = x
6 2 = x 3 , гдe x ≥ 0
Рассмотрим примеры вынесения буквы в степени из-под корня.
№ 347 (2, 4) Колягин (Алимов) 8 класс
Вынести множитель из-под знака корня (буквами обозначены положительные числа).
2) √ 2x 2 = x
2 |
2 |
√ 2 = x √ 2
4) √ 3a 6 = a
6 |
2 |
√ 3 = a 3 √ 3
В более сложных примерах требуется вынести и числовой множитель, и букву в степени из-под корня.
№ 348 (2) Колягин (Алимов) 8 класс
Вынести множитель из-под знака корня (буквами обозначены положительные числа).
Вначале отдельно вынесем буквенный множитель из-под корня.
√ 75a 2 = a
2 |
2 |
· √ 75 = a √ 75 = …
Теперь разложим число « 75 » на множители, один из которых можно вынести из-под знака квадратного корня.
Число « 75 » явно делится на « 5 ». Проверим, можно ли число « 75 » разложить на квадрат числа « 5 2 = 25 ».
Завершим пример, вынеся число « 25 » из-под знака корня.
√ 75a 2 = a
2 |
2 |
· √ 75 = a √ 75 =
= a √ 25 · 3 = 5a √ 3
№ 549 (2) Мерзляк 8 класс
Не всегда удается сразу вынести букву в степени из-под знака корня. В данном примере степень « 9 » не делится нацело на « 2 ».
Вспомним из урока «Свойства степени» правило произведение степеней с одинаковым основанием.
Свойство работает и в обратную сторону.
Вернемся к нашему примеру. Разложим « y 9 » на множители со степенями так, чтобы одна из степеней нацело делилась на « 2 ». Представим степень « 9 » как сумму чисел « 9 = 6 + 3 ».
Используем свойство произведения степеней с одинаковым основанием в обратную сторону и разложим « у » на множители.
Источник
Корень степени N: основные определения
Поздравляю: сегодня мы будем разбирать корни — одну из самых мозговыносящих тем 8-го класса.:)
У вас тоже так? Читайте дальше — и всё поймёте
Многие путаются в корнях не потому, что они сложные (чего там сложного-то — пара определений и ещё пара свойств), а потому что в большинстве школьных учебников корни определяются через такие дебри, что разобраться в этой писанине могут разве что сами авторы учебников. Да и то лишь с бутылкой хорошего виски.:)
Поэтому сейчас я дам самое правильное и самое грамотное определение корня — единственное, которое вам действительно следует запомнить. А уже затем объясню: зачем всё это нужно и как это применять на практике.
Но сначала запомните один важный момент, про который многие составители учебников почему-то «забывают»:
Вот в этом грёбаном «несколько отличается» скрыто, наверное, 95% всех ошибок и недопонимания, связанного с корнями. Поэтому давайте раз и навсегда разберёмся с терминологией:
Определение. из числа $a$ — это любое неотрицательное число $b$ такое, что $<^
>=a$. А из того же числа $a$ — это вообще любое число $b$, для которого выполняется всё то же равенство: $<^ >=a$.
В любом случае корень обозначается вот так:
Число $n$ в такой записи называется , а число $a$ — . В частности, при $n=2$ получим наш «любимый» квадратный корень (кстати, это корень чётной степени), а при $n=3$ — кубический (степень нечётная), который тоже часто встречается в задачах и уравнениях.
Примеры. Классические примеры квадратных корней:
Кстати, $\sqrt<0>=0$, а $\sqrt<1>=1$. Это вполне логично, поскольку $<<0>^<2>>=0$ и $<<1>^<2>>=1$.
Кубические корни тоже часто встречаются — не надо их бояться:
Ну, и парочка «экзотических примеров»:
Если вы не поняли, в чём разница между чётной и нечётной степенью — перечитайте определение ещё раз. Это очень важно!
А мы тем временем рассмотрим одну неприятную особенность корней, из-за которой нам и потребовалось вводить раздельное определение для чётных и нечётных показателей.
Зачем вообще нужны корни?
Прочитав определение, многие ученики спросят: «Что курили математики, когда это придумывали?» И вправду: зачем вообще нужны все эти корни?
Чтобы ответить на этот вопрос, вернёмся на минутку в начальные классы. Вспомните: в те далёкие времена, когда деревья были зеленее, а пельмени вкуснее, основная наша забота была в том, чтобы правильно умножать числа. Ну, что-нибудь в духе «пять на пять — двадцать пять», вот это вот всё. Но ведь можно умножать числа не парами, а тройками, четвёрками и вообще целыми комплектами:
Ну и так далее. Ладно, ладно: последние две строчки я считал на калькуляторе.:)
Однако суть не в этом. Фишка в другом: математики — людишки ленивые, поэтому им было в лом записывать умножение десяти пятёрок вот так:
\[5\cdot 5\cdot 5\cdot 5\cdot 5\cdot 5=15\ 625\]
Поэтому они придумали степени. Почему бы вместо длинной строки не записать количество множителей в виде верхнего индекса? Типа вот такого:
\[5\cdot 5\cdot 5\cdot 5\cdot 5\cdot 5=<<5>^<6>>=15\ 625\]
Это же очень удобно! Все вычисления сокращаются в разы, и можно не тратить кучу листов пергамента блокнотиков на запись какого-нибудь 5 183 . Такую запись назвали степенью числа, у неё нашли кучу свойств, но счастье оказалось недолгим.
После грандиозной пьянки, которую организовали как раз по поводу «открытия» степеней, какой-то особо упоротый математик вдруг спросил: «А что, если нам известна степень числа, но неизвестно само число?» Вот, действительно, если нам известно, что некое число $b$, допустим, в 5-й степени даёт 243, то как нам догадаться, чему равно само число $b$?
Проблема эта оказалась гораздо более глобальной, чем может показаться на первый взгляд. Потому что выяснилось, что для большинства «готовых» степеней таких «исходных» чисел нет. Судите сами:
А, что если $<^<3>>=50$? Получается, что нужно найти некое число, которое будучи трижды умноженное само на себя даст нам 50. Но что это за число? Оно явно больше 3, поскольку 3 3 = 27 3 = 64 > 50. Т.е. это число лежит где-то между тройкой и четвёркой, но чему оно равно — фиг поймёшь.
Именно для этого математики и придумали корни $n$-й степени. Именно для этого ввели значок радикала $\sqrt<*>$. Чтобы обозначить то самое число $b$, которое в указанной степени даст нам заранее известную величину
Не спорю: зачастую эти корни легко считаются — мы видели несколько таких примеров выше. Но всё-таки в большинстве случаев, если вы загадаете произвольное число, а затем попробуете извлечь из него корень произвольной степени, вас ждёт жестокий облом.
Да что там! Даже самый простой и всем знакомый $\sqrt<2>$ нельзя представить в привычном нам виде — как целое число или дробушка. А если вы вобьёте это число в калькулятор, то увидите вот это:
Как видите, после запятой идёт бесконечная последовательность цифр, которые не подчиняются никакой логике. Можно, конечно, округлить это число, чтобы быстро сравнить с другими числами. Например:
\[\sqrt<2>=1,4142. \approx 1,4 \lt 1,5\]
Или вот ещё пример:
\[\sqrt<3>=1,73205. \approx 1,7 \gt 1,5\]
Но все эти округления, во-первых, довольно грубые; а во-вторых, работать с примерными значениями тоже надо уметь, иначе можно словить кучу неочевидных ошибок (кстати, навык сравнения и округления в обязательном порядке проверяют на профильном ЕГЭ).
Поэтому в серьёзной математике без корней не обойтись — они являются такими же равноправными представителями множества всех действительных чисел $\mathbb
Невозможность представить корень в виде дроби вида $\frac
$ означает, что данный корень не является рациональным числом. Такие числа называются иррациональными, и их нельзя точно представить иначе как с помощью радикала, либо других специально предназначенных для этого конструкций (логарифмов, степеней, пределов и т.д.). Но об этом — в другой раз.
Рассмотрим несколько примеров, где после всех вычислений иррациональные числа всё же останутся в ответе.
Естественно, по внешнему виду корня практически невозможно догадаться о том, какие числа будут идти после запятой. Впрочем, можно, посчитать на калькуляторе, но даже самый совершенный калькулятор дат нам лишь несколько первых цифр иррационального числа. Поэтому гораздо правильнее записать ответы в виде $\sqrt<5>$ и $\sqrt[3]<-2>$.
Именно для этого их и придумали. Чтобы удобно записывать ответы.
Почему нужны два определения?
Внимательный читатель уже наверняка заметил, что все квадратные корни, приведённые в примерах, извлекаются из положительных чисел. Ну, в крайнем случае из нуля. А вот кубические корни невозмутимо извлекаются абсолютно из любого числа — хоть положительного, хоть отрицательного.
Почему так происходит? Взгляните на график функции $y=<
График квадратичной функции даёт два корня: положительный и отрицательный
Попробуем с помощью этого графика посчитать $\sqrt<4>$. Для этого на графике проведена горизонтальная линия $y=4$ (отмечена красным цветом), которая пересекается с параболой в двух точках:$<
С первым числом всё понятно — оно положительное, поэтому оно и есть корень:
Но что тогда делать со второй точкой? Типа у четвёрки сразу два корня? Ведь если возвести в квадрат число −2, мы тоже получим 4. Почему бы тогда не записать$\sqrt<4>=-2$? И почему учителя смотрят на подобные записи так, как будто хотят вас сожрать?:)
В том-то и беда, что если не накладывать никаких дополнительных условий, то квадратных корней у четвёрки будет два — положительный и отрицательный. И у любого положительного числа их тоже будет два. А вот у отрицательных чисел корней вообще не будет — это видно всё по тому же графику, поскольку парабола нигде не опускается ниже оси y, т.е. не принимает отрицательных значений.
Подобная проблема возникает у всех корней с чётным показателем:
- Строго говоря, корней с чётным показателем $n$ у каждого положительного числа будет сразу две штуки;
- Из отрицательных чисел корень с чётным $n$ вообще не извлекается.
Именно поэтому в определении корня чётной степени $n$ специально оговаривается, что ответ должен быть неотрицательным числом. Так мы избавляемся от неоднозначности.
Зато для нечётных $n$ такой проблемы нет. Чтобы убедиться в этом, давайте взглянем на график функции $y=<
Кубическая парабола принимает любые значения, поэтому кубический корень извлекается из любого числа
Из этого графика можно сделать два вывода:
- Ветви кубической параболы, в отличие от обычной, уходят на бесконечность в обе стороны — и вверх, и вниз. Поэтому на какой бы высоте мы ни проводили горизонтальную прямую, эта прямая обязательно пересечётся с нашим графиком. Следовательно, кубический корень можно извлечь всегда, абсолютно из любого числа;
- Кроме того, такое пересечение всегда будет единственным, поэтому не нужно думать, какое число считать «правильным» корнем, а на какое — забить. Именно поэтому определение корней для нечётной степени проще, чем для чётной (отсутствует требование неотрицательности).
Жаль, что эти простые вещи не объясняют в большинстве учебников. Вместо этого нам начинают парить мозг всякими арифметическими корнями и их свойствами.
Да, я не спорю: что такое арифметический корень — тоже надо знать. И я подробно расскажу об этом в отдельном уроке. Сегодня мы тоже поговорим о нём, поскольку без него все размышления о корнях $n$-й кратности были бы неполными.
Но сначала надо чётко усвоить то определение, которое я дал выше. Иначе из-за обилия терминов в голове начнётся такая каша, что в итоге вообще ничего не поймёте.
А всего-то и нужно понять разницу между чётными и нечётными показателями. Поэтому ещё раз соберём всё, что действительно нужно знать о корнях:
- Корень чётной степени существует лишь из неотрицательного числа и сам всегда является неотрицательным числом. Для отрицательных чисел такой корень неопределён.
- А вот корень нечётной степени существует из любого числа и сам может быть любым числом: для положительных чисел он положителен, а для отрицательных — как намекает кэп, отрицательный.
Разве это сложно? Нет, не сложно. Понятно? Да вообще очевидно! Поэтому сейчас мы немного потренируемся с вычислениями.
Основные свойства и ограничения
У корней много странных свойств и ограничений — об этом будет отдельный урок. Поэтому сейчас мы рассмотрим лишь самую важную «фишку», которая относится лишь к корням с чётным показателем. Запишем это свойство в виде формулы:
Другими словами, если возвести число в чётную степень, а затем из этого извлечь корень той же степени, мы получим не исходное число, а его модуль. Это простая теорема, которая легко доказывается (достаточно отдельно рассмотреть неотрицательные $x$, а затем отдельно — отрицательные). О ней постоянно талдычат учителя, её дают в каждом школьном учебнике. Но как только дело доходит до решения иррациональных уравнений (т.е. уравнений, содержащих знак радикала), ученики дружно забывают эту формулу.
Чтобы детально разобраться в вопросе, давайте на минуту забудем все формулы и попробуем посчитать два числа напролом:
Это очень простые примеры. Первый пример решит большинство людишек, а вот на втором многие залипают. Чтобы без проблем решить любую подобную хрень, всегда учитывайте порядок действий:
- Сначала число возводится в четвёртую степень. Ну, это как бы несложно. Получится новое число, которое даже в таблице умножения можно найти;
- И вот уже из этого нового числа необходимо извлечь корень четвёртой степени. Т.е. никакого «сокращения» корней и степеней не происходит — это последовательные действия.
Раберёмся с первым выражением: $\sqrt[4]<<<3>^<4>>>$. Очевидно, что сначала надо посчитать выражение, стоящее под корнем:
Затем извлекаем корень четвёртой степени из числа 81:
Теперь сделаем то же самое со вторым выражением. Сначала возводим число −3 в четвёртую степени, для чего потребуется умножить его само на себя 4 раза:
\[<<\left( -3 \right)>^<4>>=\left( -3 \right)\cdot \left( -3 \right)\cdot \left( -3 \right)\cdot \left( -3 \right)=81\]
Получили положительное число, поскольку общее количество минусов в произведении — 4 штуки, и они все взаимно уничтожится (ведь минус на минус даёт плюс). Дальше вновь извлекаем корень:
В принципе, эту строчку можно было не писать, поскольку и ежу понятно, что ответ получится один и тот же. Т.е. чётный корень из той же чётной степени «сжигает» минусы, и в этом смысле результат неотличим от обычного модуля:
Эти вычисления хорошо согласуются с определением корня чётной степени: результат всегда неотрицателен, да и под знаком радикала тоже всегда стоит неотрицательное число. В противном случае корень не определён.
Замечание по поводу порядка действий
Таким образом, ни в коем случае нельзя бездумно сокращать корни и степени, тем самым якобы «упрощая» исходное выражение. Потому что если под корнем стоит отрицательное число, а его показатель является чётным, мы получим кучу проблем.
Впрочем, все эти проблемы актуальны лишь для чётных показателей.
Вынесение минуса из-под знака корня
Естественно, у корней с нечётными показателями тоже есть своя фишка, которой в принципе не бывает у чётных. А именно:
Короче говоря, можно выносить минус из-под знака корней нечётной степени. Это очень полезное свойство, которое позволяет «вышвырнуть» все минусы наружу:
Это простое свойство значительно упрощает многие вычисления. Теперь не нужно переживать: вдруг под корнем затесалось отрицательное выражение, а степень у корня оказалась чётной? Достаточно лишь «вышвырнуть» все минусы за пределы корней, после чего их можно будет умножать друг на друга, делить и вообще делать многие подозрительные вещи, которые в случае с «классическими» корнями гарантированно приведут нас к ошибке.
И вот тут на сцену выходит ещё одно определение — то самое, с которого в большинстве школ и начинают изучение иррациональных выражений. И без которого наши рассуждения были бы неполными. Встречайте!
Арифметический корень
Давайте предположим на минутку, что под знаком корня могут находиться лишь положительные числа или в крайнем случае ноль. Забьём на чётные/нечётные показатели, забьём на все определения, приведённые выше — будем работать только с неотрицательными числами. Что тогда?
А тогда мы получим арифметический корень — он частично пересекается с нашими «стандартными» определениями, но всё же отличается от них.
Определение. из неотрицательного числа $a$ называется такое неотрицательное число $b$, что $<^
>=a$.
Как видим, нас больше не интересует чётность. Взамен неё появилось новое ограничение: подкоренное выражение теперь всегда неотрицательно, да и сам корень тоже неотрицателен.
Чтобы лучше понять, чем арифметический корень отличается от обычного, взгляните на уже знакомые нам графики квадратной и кубической параболы:
Область поиска арифметического корня — неотрицательные числа
Как видите, отныне нас интересуют лишь те куски графиков, которые расположены в первой координатной четверти — там, где координаты $x$ и $y$ положительны (или хотя бы ноль). Больше не нужно смотреть на показатель, чтобы понять: имеем мы право ставить под корень отрицательное число или нет. Потому что отрицательные числа больше в принципе не рассматриваются.
Возможно, вы спросите: «Ну и зачем нам такое кастрированное определение?» Или: «Почему нельзя обойтись стандартным определением, данным выше?»
Что ж, приведу всего одно свойство, из-за которого новое определение становится целесообразным. Например, правило возведения в степень:
Обратите внимание: мы можем возвести подкоренное выражение в любую степень и одновременно умножить на эту же степень показатель корня — и в результате получится то же самое число! Вот примеры:
Ну и что в этом такого? Почему мы не могли сделать это раньше? А вот почему. Рассмотрим простое выражение: $\sqrt[3]<-2>$ — это число вполне нормальное в нашем классическом понимании, но абсолютно недопустимо с точки зрения арифметического корня. Попробуем преобразовать его:
Как видите, в первом случае мы вынесли минус из-под радикала (имеем полное право, т.к. показатель нечётный), а во втором — воспользовались указанной выше формулой. Т.е. с точки зрения математики всё сделано по правилам.
WTF?! Как одно и то же число может быть и положительным, и отрицательным? Никак. Просто формула возведения в степень, которая прекрасно работает для положительных чисел и нуля, начинает выдавать полную ересь в случае с отрицательными числами.
Вот для того, чтобы избавиться от подобной неоднозначности, и придумали арифметические корни. Им посвящён отдельный большой урок, где мы подробно рассматриваем все их свойства. Так что сейчас не будем на них останавливаться — урок и так получился слишком затянутым.
Алгебраический корень: для тех, кто хочет знать больше
Долго думал: выносить эту тему в отдельный параграф или нет. В итоге решил оставить здесь. Данный материал предназначен для тех, кто хочет понять корни ещё лучше — уже не на среднем «школьном» уровне, а на приближенном к олимпиадному.
Так вот: помимо «классического» определения корня $n$-й степени из числа и связанного с ним разделения на чётные и нечётные показатели есть более «взрослое» определение, которое вообще не зависит от чётности и прочих тонкостей. Это называется алгебраическим корнем.
Определение. из числа любого $a$ — это множество всех чисел $b$ таких, что $<^
>=a$. Для таких корней нет устоявшегося обозначения, поэтому просто поставим чёрточку сверху:
Принципиальное отличие от стандартного определения, приведённого в начале урока, состоит в том, что алгебраический корень — это не конкретное число, а множество. А поскольку мы работаем с действительными числами, это множество бывает лишь трёх типов:
- Пустое множество. Возникает в случае, когда требуется найти алгебраический корень чётной степени из отрицательного числа;
- Множество, состоящее из одного-единственного элемента. Все корни нечётных степеней, а также корни чётных степеней из нуля попадают в эту категорию;
- Наконец, множество может включать два числа — те самые $<
_<1>>$ и $< _<2>>=-< _<1>>$, которое мы видели на графике квадратичной функции. Соответственно, такой расклад возможен лишь при извлечении корня чётной степени из положительного числа.
Последний случай заслуживает более подробного рассмотрения. Посчитаем парочку примеров, чтобы понять разницу.
Решение. С первым выражением всё просто:
Именно два числа входят в состав множества. Потому что каждое из них в квадрате даёт четвёрку.
Тут мы видим множество, состоящее лишь из одного числа. Это вполне логично, поскольку показатель корня — нечётный.
Наконец, последнее выражение:
Получили пустое множество. Потому что нет ни одного действительного числа, которое при возведении в четвёртую (т.е. чётную!) степень даст нам отрицательное число −16.
Финальное замечание. Обратите внимание: я не случайно везде отмечал, что мы работаем с действительными числами. Потому что есть ещё комплексные числа — там вполне можно посчитать и $\sqrt[4]<-16>$, и многие другие странные вещи.
Однако в современном школьном курсе математики комплексные числа почти не встречаются. Их вычеркнули из большинства учебников, поскольку наши чиновники считают эту тему «слишком сложной для понимания».
На этом всё. В следующем уроке мы рассмотрим все ключевые свойства корней и научимся, наконец, упрощать иррациональные выражения.:)
Источник