Вариабельность биохимических показателей крови и установление референсных интервалов в доклинических исследованиях. Сообщение 1: крысы
Н.Г. Войтенко, кандидат биологических наук, руководитель лаборатории биохимии и гематологии,
М.Н. Макарова, доктор медицинских наук, директор,
А.А. Зуева, токсиколог
АО «НПО «ДОМ ФАРМАЦИИ»,
188663, Россия, Ленинградская обл., Всеволожский район, г.п. Кузьмоловский, ул. Заводская, д. 3, к. 245
Резюме
Установление корректных референсных интервалов для лабораторных показателей актуально как в клинической практике, так и при проведении исследований на животных. Проведен ретроспективный анализ данных по 11 биохимическим показателям сыворотки крови крыс на большой выборке животных (196 самцов и 184 самки крыс, в возрасте 12–20 нед, массой 250–350 г).
Установлено, что в крови крыс наиболее часто наблюдаются статистические выбросы среди таких показателей, как аспартатаминотрансфераза (АСТ), аланинаминотрансфераза (АЛТ), выбросы других показателей, существенно реже. Этот факт необходимо учитывать при планировании исследований, что требует увеличения числа повторностей при проведении анализа показателей.
Установлены референсные интервалы для креатинина, мочевины, АСТ, АЛТ, щелочной фосфатазы, холестерина, триглицеридов, общего белка, альбумина, глюкозы и общего билирубина. Рассчитана межиндивидуальная вариабельность по указанным биохимическим показателям. Наибольшая межиндивидуальная вариабельность (более 30%) установлена для таких показателей, как активность щелочной фосфатазы, уровень триглицеридов, глюкозы и общего билирубина.
Проведено сравнение полученных в ходе ретроспективного анализа данных с референсными интервалами биохимических показателей крови крыс различных линий из 3 крупных питомников (Charles River, Taconic и Envigo). Представленные в литературе референсные интервалы также свидетельствуют о высокой вариабельности активности ряда ферментов (в том числе щелочной фосфатазы), а также концентрации глюкозы, общего билирубина и триглицеридов в крови крыс. Рассчитанные нами референсные интервалы хорошо сопоставимы с данными, представленными в литературе.
Полученные результаты свидетельствуют о предпочтительном использовании именно ретроспективного анализа данных, который позволяет получить более корректные референсные интервалы на большей выборке животных, без ущерба для этических принципов. Сравнительный анализ межиндивидуальной вариабельности биохимических показателей крови крыс и человека демонстрирует наличие видовых различий, которые необходимо учитывать при рассмотрении результатов доклинических исследований.
Введение
Биохимический анализ крови – неотъемлемая часть доклинических исследований, проводимых на лабораторных животных. В большинстве случаев дизайн эксперимента предусматривает сравнение показателей животных из интактных и подопытных групп. Число животных в группе, как правило, не превышает 10, что, с точки зрения статистики, является малой выборкой [1]. Для заключения о наличии/отсутствии клинической значимости наблюдаемых отклонений необходимо иметь представление о вариабельности изучаемых показателей в данной популяции животных, т.е. о значениях референсных интервалов (РИ).
В клинической практике применяют несколько способов установления РИ. Классический подход – формирование референсной группы с применением строгих правил включения и исключения, обследование и последующий расчет РИ. Это является трудоемким и дорогостоящим процессом для медицинских учреждений, а в доклинических исследованиях еще и противоречит нормам биоэтики, так как для установления РИ в каждой половой или возрастной группе требуется не менее 120 наблюдений [2, 4]. Другой подход – апостериорный (ретроспективный) – позволяет использовать для расчета РИ результаты, ранее полученные в данной лаборатории, за определенный период времени. Также на практике прибегают к данным в справочной литературе, что в доклинических исследованиях оправдано при анализе новых или редко используемых показателей или экзотических видов лабораторных животных.
В связи с изложенным, цель нашей работы – установление референсных интервалов для основных биохимических показателей, используемых в доклинических исследованиях, и оценка частоты статистических выбросов для этих показателей. Для установления РИ был выбран ретроспективный метод, что позволило включить в массив данных большое число животных, не нарушая при этом биоэтические принципы. Крысы являются одним из самых востребованных тест-систем. Поэтому мы рассматриваем вопрос установления РИ биохимических показателей на примере этих животных.
Материал и методы
Для ретроспективного анализа использовали данные, полученные в нашем центре, в период проведения текущих исследований с октября 2018 по октябрь 2019 г. В массив данных включали животных интактных групп из 26 исследований, возраст самцов и самок аутбредных крыс составлял 12–20 нед, масса тела – 250–350 г (питомник АО «НПО «ДОМ ФАРМАЦИИ», Россия). В сформированном массиве находились данные, полученные ранее от 196 самцов и 184 самок крыс. В сыворотке крови этих животных на автоматическом биохимическом анализаторе Rendom Access A-25 (Испания) были рассчитаны следующие показатели: креатинин, мочевина, аланинаминотрансфераза (АЛТ), аспартатаминотрансфераза (АСТ), щелочная фосфатаза (ЩФ), холестерин, триглицериды, общий белок, альбумин, глюкоза и общий билирубин. Концентрацию общего билирубина определяли с помощью набора реактивов Вектор-Бест (Россия), остальные аналиты – с помощью наборов Bio Systems (Испания). Статистическую обработку результатов осуществляли в программе Statistica.10: статистические выбросы по методу Тьюки, вид распределения определяли по критерию Шапиро–Уилка, сравнение между животными разного пола по U-критерию Манна Уитни и t-критерию Стьюдента.
Результаты и обсуждение
Для устранения влияния аномальных значений из массива данных были исключены статистические выбросы, которые определяли отдельно для каждого показателя и пола животных по методу Тьюки. Из дальнейшей работы были исключены данные, лежащие за пределами интервала (Q1–1,5•IQR)-(Q3+1,5•IQR), где Q1 и Q3 – границы 1-го и 3-го квартилей, а IQR – межквартильный интервал. В этот интервал попадали как «extremes», или жесткие выбросы, так и «outliers», или мягкие выбросы.
После исключения выбросов массивы данных были проанализированы на соответствие действующим в центре РИ. Последние были рассчитаны с применением классического подхода, но на ограниченной выборке животных (20 голов – 10 самцов и 10 самок). Данные о доле статистических выбросов, в том числе «extremes», по каждому показателю и выходящих за пределы РИ значений представлены в табл. 1.
Доли статистических выбросов и отклонений от действующих РИ
Источник
Лейкоциты у крысы норма
В медицинской биотехнологии постановка экспериментов при помощи моделирования патологических состояний, например ожогового повреждения кожи, имеет огромное значение для глубокого исследования крови и кроветворных органов [3]. Исходя из этого, необходимо тщательное и всестороннее изучение всех изменений, которые происходят в организме при этих воздействиях. Главным образом это относится к системам поддержания гомеостаза [2].
Ожоговые поражения кожи стали в современном мире одним из наиболее социально значимых и распространенных типов травматических повреждений у человека. Изучению вопроса реакции клеток крови на ожоги посвящен ряд исследований [1, 8].
Любое заболевание, патологический процесс, а также ряд физиологических сдвигов могут в той или иной степени отразиться на количественных и качественных особенностях состава циркулирующей крови [5]. Этим и определяется огромное значение необходимости изучения крови. Белые клетки крови, имея высокую реактивность, быстро включаются в адаптационные реакции. Они способны к неспецифическому реагированию в ответ на альтерирующие воздействия.
Термическая травма сопровождается развитием интоксикации. Кровь в первую очередь подвергается действию токсических веществ, возникших в очаге поражения [1].
Свой вклад в общее состояние системы организма вносят компоненты крови. Наиболее уязвимым объектом для действия продуктов свободнорадикального окисления липидов является стенка кровеносных сосудов, что обусловлено высоким уровнем кислорода в крови и низким уровнем его утилизации [9]. В условиях патологического процесса происходит поражение неклеточного компонента сосудистой стенки.
Цель исследования – изучение показателей периферической крови половозрелых крыс в норме и в условиях термического воздействия.
Материалы и методы. Объектом исследования явились 50 беспородных крыс-самцов 4-месячного возраста. Во время эксперимента регистрировали общее состояние и поведение животных. Самцы крыс были разделены на пять групп по типу воздействия:
I группа – животные, не подвергшиеся ожоговому воздействию (контрольная, 10 шт.);
II группа – животные, получившие ожоговое воздействие и не подвергшиеся терапии (10 шт.). Раны регенерировали естественным путем;
III группа – животные, получившие ожоговое воздействие и подвергшиеся терапии спреем «Д-Пантенол» (10 шт.);
IV группа – животные, получившие ожоговое воздействие и подвергшиеся терапии бальзамом мазевой формы «Спасатель» (10 шт.);
V группа – животные, получившие ожоговое воздействие и подвергшиеся терапии аппликациями настойки календулы (10 шт.).
Исследование морфологических и биохимических показателей периферической крови заключалось в определении количества лейкоцитов, количества эритроцитов, лейкоцитарной формулы, уровня гемоглобина, перекисной резистентности эритроцитов.
Уровень гемоглобина в образцах крови крыс определяли электрофотометрическим способом на гемоглобинометре APEL Hemoglobinmeter HG-202. Мазки фиксировали и окрашивали по Романовскому – Гимзе. Идентификация форменных элементов крови проводилась согласно методике Н. Т. Ивановой [4]. Количество эритроцитов крови подсчитывали по стандартной методике в камере Горяева. Количество лейкоцитов считали по мазкам крови крыс.
Для оценки уровня свободнорадикального окисления и выраженности в связи с этим липолитических процессов в крови проводили измерение перекисной резистентности эритроцитов. Перекисный гемолиз эритроцитов является чувствительным показателем, отражающим про– и антиоксидантный баланс организма [6].
Для определения перекисного гемолиза эритроцитов использовали модификацию методов определения степени перекисного гемолиза эритроцитов (ПГЭ) А. А. Покровского и А. А. Абразцова [7], которую предложили А. Е. Лазько, Р. И. Асфандияров и А. А. Резаев [4].
Результаты исследования и их обсуждение. Анализ гематологических исследований экспериментальных животных показал, что наиболее высокий уровень гемоглобина периферической крови наблюдался у крыс, лечившихся бальзамом «Спасатель» и спреем «Д-пантенол», что наглядно отображено в таблице 1. В группе крыс, лечившихся настойкой календулы, данный показатель незначительно отличался от значений у обожженных животных, не получавших лечения.
Гематологические показатели через 3 суток после ожоговой травмы
Источник
Лейкоциты у крысы норма
В связи с усиленными темпами освоения Крайнего Севера в настоящее время вопрос адаптации организма человека к жизни в северных широтах, где он подвергается воздействию низких природных температур, вновь становится актуальным [1; 2].
Известно, что на негативное воздействие различных факторов окружающей природной среды организм человека отвечает мобилизацией адаптационных механизмов регуляции функционирования систем, в том числе и системы крови, что может проявляться изменением её клеточного состава [3; 4]. В осуществлении защитной реакции организма большую роль играют лейкоциты, которые обеспечивают неспецифический и специфический клеточный иммунитет организма и отвечают на воздействия любых стресс-факторов. При длительном или чрезвычайно сильном воздействии неблагоприятных факторов происходят изменения иммунологической реактивности, приводящие к снижению адаптационных возможностей организма, к развитию транзиторных или стойких форм вторичной иммунной недостаточности [5].
Дисбаланс иммунной системы оказывает влияние на формирование, характер течения и исходы многих патологических процессов. Наиболее высокие уровни заболеваемости в условиях Крайнего Севера приходятся на болезни органов дыхания, нервной системы, органов чувств и системы кровообращения [1; 6; 7].
Таким образом, актуальность исследования механизмов адаптации системы крови и реакций иммунных органов на холодовое воздействие продиктована необходимостью поиска путей повышения сопротивляемости организма к низким температурам, разработки мер профилактики и коррекции нарушений иммунного ответа организма людей, постоянно и временно проживающих в условиях Заполярья, в том числе и Республики Саха (Якутия). Эта медико-социальная проблема требует глубокой и всесторонней проработки, прежде всего, на теоретическом уровне.
Данное исследование является частью комплексной работы, связанной с изучением механизмов дезадаптации в условиях Арктики и Субарктики. Данная работа проводится с учетом приоритетных направлений научной платформы «Иммунология» государственной программы «Стратегия развития медицинской науки в Российской Федерации на период до 2025 года».
Целью исследования является изучение изменений клеточного состава крови крыс в зависимости от времени их экспозиции в условиях холодового воздействия.
Материалы и методы исследования. Исследование проводили на 40 беспородных крысах-самцах массой тела 200-300 г. Выбор пола животных был продиктован необходимостью получения стабильных результатов, исключая влияние циклических изменений, характерных для организма самок. Методом случайной выборки животные были распределены на контрольную группу и опытную, разделенную на 4 подгруппы по 8 особей в каждой. Животные находились в стандартных условиях вивария, соответствующих требованиям санитарно-эпидемиологических правил СП 2.2.1.3218-14 «Санитарно-эпидемиологические требования к устройству, оборудованию и содержанию экспериментально-биологических клиник (вивариев)» (2014). Экспозицию опытных крыс производили в холодильных камерах при температуре -20 ºС с соблюдением адекватных условий влажности и вентиляции в течение 60 минут ежедневно на протяжении 30 суток.
Протокол экспериментальной части исследований, использованный на этапах содержания животных, моделирования патологических процессов и выведения их из опыта, соответствовал принципам биологической этики, изложенным в Международных рекомендациях по проведению медико-биологических исследований с использованием животных (1985); Европейской конвенции о защите позвоночных животных, используемых для экспериментов или иных научных целей (Страсбург, 1986); Приказе МЗ СССР № 755 от 12.08.1977 г. «О мерах по дальнейшему совершенствованию организационных форм работы с использованием экспериментальных животных»; Приказе МЗ РФ № 267 от 19.06.2003 г. «Об утверждении правил лабораторной практики» [8].
Исследования проводили сразу после получения проб крови на 7-е (1-я подгруппа),
14-е (2-я подгруппа), 21-е (3-я подгруппа), 30-е сутки (4-я подгруппа) после начала эксперимента. Животных выводили из опыта методом декапитации с соблюдением требований гуманности, согласно Приложению № 4 «О порядке проведения эвтаназии (умерщвления) животного» к Правилам проведения работ с использованием экспериментальных животных (приложение к Приказу МЗ СССР № 755 от 12.08.1977). Кровь получали во время декапитации животного. Гематологические исследования проводили на автоматизированном гематологическом анализаторе AbacusJunior 30, биохимические исследования сыворотки крови – на биохимическом анализаторе Mindray BA-88A с применением растворов HigtTehnology.
Статистическую обработку данных осуществляли с использованием пакета программ Statistica 6.0. После проверки вариационных рядов на правильность распределения значимость различий между ними определяли параметрическим методом с расчётом средней арифметической, ошибки средней арифметической (М±m) и t-критерия Стьюдента. Различие считали значимым при р
Источник