Математика как избавится от корня

Содержание
  1. Как избавиться от иррациональности
  2. Что такое иррациональность в знаменателе дроби
  3. Как избавиться от иррациональности, когда в знаменателе только один корень
  4. № 366 (1) Колягин, Алимов 9 класс
  5. Как избавиться от иррациональности, когда в знаменателе несколько корней
  6. № 366 (3) Колягин, Алимов 9 класс
  7. Примеры освобождения от иррациональности в знаменателе
  8. № 366 (2; 7) Колягин, Алимов 9 класс
  9. № 557 (5) Мерзляк 9 класс
  10. Как избавиться от квадратного корня в уравнении — математический — 2021
  11. TL; DR (слишком долго; не читал)
  12. Простой пример
  13. Изолировать квадратный корень
  14. Квадрат обе стороны уравнения
  15. Проверь свою работу
  16. Немного более сложный пример
  17. Изолировать радикальное
  18. Предупреждения
  19. Квадрат обе стороны
  20. Предупреждения
  21. Изолировать переменную
  22. Проверь свою работу
  23. Как оценить логарифмы с основанием квадратного корня
  24. Как оценить, используя кривую квадратного корня
  25. Как получить ответ квадратного корня из квадратного корня на Ти-84
  26. Как освободиться от иррациональности в знаменателе: способы, примеры, решения
  27. Понятие освобождения от иррациональности в знаменателе
  28. Основные действия для избавления от иррациональности в знаменателе дроби
  29. Как преобразовать выражение в знаменателе дроби
  30. Избавление от иррациональности методом умножения на корень
  31. Избавление от иррациональности методом умножения на сопряженное выражение
  32. Преобразование дробей с иррациональностью в знаменателе с использованием формул суммы и разности кубов
  33. Последовательное применение различных способов преобразования

Как избавиться от иррациональности

Иррациональностью в знаменателе (нижней части дроби) называют наличие корней в знаменателе.

Что такое иррациональность в знаменателе дроби

Рассмотрим на примерах ниже, в каких дробях в знаменателе есть иррациональность, а в каких её нет.

  • √ 6
    2

    в знаменателе нет корней, значит иррациональности нет ;

  • 5
    √ 6

    в знаменателе есть
    корень « √ 6 » — иррациональность в знаменателе есть .

  • 4
    √ 7 − √ 3

    в знаменателе есть корни « √ 7 » и « √ 3 » — иррациональность есть .

  • a + b
    √ c − 3

    в знаменателе есть
    корень « √ c − 3 » — иррациональность в знаменателе есть .

Избавиться от иррациональности в знаменателе означает убрать все корни из знаменателя.

Возникает логичный вопрос, как это можно сделать?

Чаще всего встречаются два вида примеров. Рассмотрим решение обоих видов.

Как избавиться от иррациональности, когда в знаменателе только один корень

На помощь приходит основное свойство дроби. Вспомним, что оно позволяет умножить и разделить дробь на одно и то же число, чтобы в конечном итоге дробь не изменилась.

Чтобы избавиться от иррациональности в знаменателе с одним корнем, нужно умножить и числитель, и знаменатель на корень из знаменателя.

По традиции разберемся на практике.

№ 366 (1) Колягин, Алимов 9 класс

Исключить иррациональность из знаменателя:

Зададим себе вопрос, на что нужно умножить « √ 5 » в знаменателе, чтобы избавиться от корня.

Ответ: на « √ 5 ». В самом деле, если квадратный корень умножить сам на себя получится число под корнем. Проверим.

√ 5 · √ 5 = √ 5 · 5 = √ 5 2 = 5

Используем основное свойство дроби, умножим и числитель, и знаменатель на « √ 5 », чтобы избавиться от корня в знаменателе.

3
√ 5

=

3 · √ 5
√ 5 · √ 5

=

3 · √ 5
√ 5 · 5

=

3 · √ 5
√ 5 2

=
=

3 · √ 5
5

Как избавиться от иррациональности, когда в знаменателе несколько корней

Чтобы избавиться от иррациональности в знаменателе c несколькими корнями, нужно использовать формулы сокращённого умножения.

Разберемся по традиции на примере.

№ 366 (3) Колягин, Алимов 9 класс

Исключить иррациональность из знаменателя:

На что нужно умножить знаменатель « 2 − √ 3 » , чтобы убрать из него корень?

Теперь недостаточно умножить знаменатель на « √ 3 » , ведь в таком случае все равно остается квадратный корень.

(2 − √ 3 ) · √ 3 = 2 √ 3 − √ 3 · √ 3 =

Мы видим, что корень никуда не исчез. Нужно искать другие варианты решения.

Вспомним формулу сокращенного умножения «Разность квадратов».

Формула разности квадратов также работает в обратную сторону.

Представим, что « 2 − √ 3 » — это часть формулы.

Логично предположить, что в формуле « a » — это « 2 », « b » — « √ 3 ». Подставим вместо знаков « ? » числа.

(a + b)(a − b) = a 2 − b 2

(2 + √ 3 )(2 − √ 3 ) = 2 2 − √ 3 2 = 4 − 3 = 1

То есть, чтобы избавиться от иррациональности в дроби требуется умножить знаменатель « 2 − √ 3 »
на « 2 + √ 3 » и через формулу «Разность квадратов» убрать квадратные корни.

Не забываем, что по основному свойству дроби мы обязаны также умножить числитель на « 2 + √ 3 ».

1
2 − √ 3

=

1 · (2 + √ 3 )
(2 − √ 3 ) · ( 2 + √ 3 )

=
=

2 + √ 3
2 2 − √ 3 2

=

2 + √ 3
4 − 3

=

2 + √ 3
1

= 2 + √ 3

Примеры освобождения от иррациональности в знаменателе

№ 366 (2; 7) Колягин, Алимов 9 класс

Исключить иррациональность из знаменателя:

2)

2
√ 6
2
√ 6

=

2 · √ 6
√ 6 · √ 6

=

2 · √ 6
√ 6 · 6

=

2· √ 6
√ 6 2

=
=

2 · √ 6
6

Рассмотрим пример, когда в знаменателе несколько корней.

7)

√ 5 − √ 7
√ 5 + √ 7

=

Используем формулу сокращенного умножения «Разность квадратов».

Умножим и числитель, и знаменатель на «( √ 5 − √ 7 )», чтобы использовать формулу сокращённого умножения в знаменателе и избавиться от корней.

√ 5 − √ 7
√ 5 + √ 7

=

( √ 5 − √ 7 ) ( √ 5 − √ 7 )
( √ 5 + √ 7 ) ( √ 5 − √ 7 )

=
=

( √ 5 − √ 7 ) 2
√ 5 2 − √ 7 2

= …

Используем в числителе (наверху в дроби) формулу «Квадрат разности».

(a − b) 2 = a 2 − 2ab + b 2

√ 5 − √ 7
√ 5 + √ 7

=

( √ 5 − √ 7 ) ( √ 5 − √ 7 )
( √ 5 + √ 7 ) ( √ 5 − √ 7 )

=
=

( √ 5 − √ 7 ) 2
√ 5 2 − √ 7 2

=
=

( √ 5 ) 2 − 2 · √ 5 · √ 7 + ( √ 7 ) 2
√ 5 2 − √ 7 2

=

=

5 − 2 √ 5 · 7 + 7
5 − 7

=

12 − 2 √ 35
− 2

=
= −

12 − 2 √ 35
2

= …

√ 5 − √ 7
√ 5 + √ 7

=

( √ 5 − √ 7 ) ( √ 5 − √ 7 )
( √ 5 + √ 7 ) ( √ 5 − √ 7 )

=
=

( √ 5 − √ 7 ) 2
√ 5 2 − √ 7 2

=

=

( √ 5 ) 2 − 2 · √ 5 · √ 7 + ( √ 7 ) 2
√ 5 2 − √ 7 2

=
=

5 − 2 √ 5 · 7 + 7
5 − 7

=

12 − 2 √ 35
− 2

=

= −

12 − 2 √ 35
2

= −

2 · (6 − √ 35 )
2

=
= −

2 (6 − √ 35 )
2

=
= − (6 − √ 35 ) = −6 + √ 35

№ 557 (5) Мерзляк 9 класс

Освободитесь от иррациональности в знаменателе дроби:

5)

1
√ a − √ b

Используем формулу сокращенного умножения «Разность квадратов».

Умножим и числитель, и знаменатель на « ( √ a + √ b ) », чтобы использовать формулу «Разность квадратов» в знаменателе и освободиться от корней.

Источник

Как избавиться от квадратного корня в уравнении — математический — 2021

Когда вы впервые узнали о квадратах чисел, таких как 3 2 , 5 2 и x 2 , вы, вероятно, узнали об обратной операции с квадратами, а также о квадратном корне. Эта обратная связь между квадратными числами и квадратными корнями важна, потому что на простом английском языке это означает, что одна операция отменяет влияние другой. Это означает, что если у вас есть уравнение с квадратными корнями, вы можете использовать операцию «возведения в квадрат» или экспоненты, чтобы удалить квадратные корни. Но есть некоторые правила о том, как это сделать, а также потенциальная ловушка ложных решений.

TL; DR (слишком долго; не читал)

Чтобы решить уравнение с квадратным корнем, сначала выделите квадратный корень с одной стороны уравнения. Затем возведите в квадрат обе стороны уравнения и продолжайте решение для переменной. Не забудьте проверить свою работу в конце.

Простой пример

Прежде чем рассмотреть некоторые потенциальные «ловушки» решения уравнения с квадратными корнями, рассмотрим простой пример: Решите уравнение √ x + 1 = 5 для x .

Изолировать квадратный корень

Используйте арифметические операции, такие как сложение, вычитание, умножение и деление, чтобы выделить выражение квадратного корня на одной стороне уравнения. Например, если исходное уравнение было √ x + 1 = 5, вы бы вычли 1 из обеих частей уравнения, чтобы получить следующее:

Квадрат обе стороны уравнения

Возведение в квадрат обеих сторон уравнения устраняет знак квадратного корня. Это дает вам:

Или, как только упростили:

Вы удалили знак квадратного корня, и у вас есть значение для x, поэтому ваша работа здесь завершена. Но подождите, есть еще один шаг:

Проверь свою работу

Проверьте свою работу, подставив найденное вами значение x в исходное уравнение:

Поскольку это вернуло правильное утверждение (5 = 5, в отличие от неверного утверждения, такого как 3 = 4 или 2 = -2, решение, которое вы нашли на шаге 2, является действительным. В этом примере проверка вашей работы кажется тривиальной. Но этот метод Устранение радикалов может иногда создавать «ложные» ответы, которые не работают в исходном уравнении, поэтому лучше всегда иметь привычку проверять свои ответы, чтобы убедиться, что они возвращают действительный результат, начиная сейчас.

Немного более сложный пример

Что если у вас есть более сложное выражение под знаком радикала (квадратный корень)? Рассмотрим следующее уравнение. Вы все еще можете применить тот же процесс, который использовался в предыдущем примере, но это уравнение выдвигает на первый план пару правил, которым вы должны следовать.

Изолировать радикальное

Как и раньше, используйте операции, такие как сложение, вычитание, умножение и деление, чтобы выделить выражение радикала на одной стороне уравнения. В этом случае вычитание 5 с обеих сторон дает вам:

Предупреждения

Обратите внимание, что вас просят изолировать квадратный корень (который предположительно содержит переменную, потому что, если бы она была константой вроде √9, вы могли бы просто решить ее на месте; √9 = 3). Вас не просят изолировать переменную. Этот шаг наступает позже, после того как вы удалили знак квадратного корня.

Квадрат обе стороны

Возведите в квадрат обе стороны уравнения, что дает вам следующее:

Что упрощает до:

Предупреждения

Обратите внимание, что вы должны поставить квадрат под знаком радикала, а не только в переменной.

Изолировать переменную

Теперь, когда вы удалили корень или квадратный корень из уравнения, вы можете изолировать переменную. Чтобы продолжить пример, добавив 4 к обеим сторонам уравнения, вы получите:

Проверь свою работу

Как и прежде, проверьте свою работу, подставив найденное вами значение y обратно в исходное уравнение. Это дает вам:

Что упрощает до:

Упрощение радикала дает вам:

29 = 29, верное утверждение, которое указывает на действительный результат.

Как оценить логарифмы с основанием квадратного корня

Логарифм числа идентифицирует степень, которую определенное число, называемое основанием, должно быть увеличено, чтобы произвести это число. В общем виде это выражается как log a (b) = x, где a — основание, x — мощность, на которую возводится основание, а b — значение, в котором логарифм .

Как оценить, используя кривую квадратного корня

Кривая квадратного корня — это метод повышения оценок всего класса, чтобы привести их в соответствие с ожиданиями. Его можно использовать для коррекции неожиданно сложных испытаний или, как правило, для сложных занятий.

Как получить ответ квадратного корня из квадратного корня на Ти-84

Чтобы найти квадратный корень с помощью моделей Texas Instruments TI-84, найдите символ квадратного корня. Эта вторая функция находится над клавишей x в квадрате на всех моделях. Нажмите вторую функциональную клавишу в левом верхнем углу клавиатуры и выберите клавишу х в квадрате. Введите значение, о котором идет речь, и нажмите Enter.

Источник

Как освободиться от иррациональности в знаменателе: способы, примеры, решения

При изучении преобразований иррационального выражения очень важным является вопрос о том, как освободиться от иррациональности в знаменателе дроби. Целью этой статьи является объяснение этого действия на конкретных примерах задач. В первом пункте мы рассмотрим основные правила данного преобразования, а во втором – характерные примеры с подробными пояснениями.

Понятие освобождения от иррациональности в знаменателе

Начнем с пояснения, в чем вообще заключается смысл такого преобразования. Для этого вспомним следующие положения.

Об иррациональности в знаменателе дроби можно говорить в том случае, если там присутствует радикал, он же знак корня. Числа, которые записаны при помощи такого знака, часто относятся к числу иррациональных. Примерами могут быть 1 2 , — 2 x + 3 , x + y x — 2 · x · y + 1 , 11 7 — 5 . К дробям с иррациональными знаменателями также относятся те, что имеют там знаки корней различной степени (квадратный, кубический и т.д.), например, 3 4 3 , 1 x + x · y 4 + y . Избавляться от иррациональности следует для упрощения выражения и облегчения дальнейших вычислений. Сформулируем основное определение:

Освободиться от иррациональности в знаменателе дроби – значит преобразовать ее, заменив на тождественно равную дробь, в знаменателе которой не содержится корней и степеней.

Такое действие может называться освобождением или избавлением от иррациональности, смысл при этом остается тем же. Так, переход от 1 2 к 2 2 , т.е. к дроби с равным значением без знака корня в знаменателе и будет нужным нам действием. Приведем еще один пример: у нас есть дробь x x — y . Проведем необходимые преобразования и получим тождественно равную ей дробь x · x + y x — y , освободившись от иррациональности в знаменателе.

После формулировки определения мы можем переходить непосредственно к изучению последовательности действий, которые нужно выполнить для такого преобразования.

Основные действия для избавления от иррациональности в знаменателе дроби

Для освобождения от корней нужно провести два последовательных преобразования дроби: умножить обе части дроби на число, отличное от нуля, а затем преобразовать выражение, получившееся в знаменателе. Рассмотрим основные случаи.

В наиболее простом случае можно обойтись преобразованием знаменателя. Например, мы можем взять дробь со знаменателем, равным корню из 9 . Вычислив 9 , мы запишем в знаменателе 3 и избавимся таким образом от иррациональности.

Однако гораздо чаще приходится предварительно умножать числитель и знаменатель на такое число, которое потом позволит привести знаменатель к нужному виду (без корней). Так, если мы выполним умножение 1 x + 1 на x + 1 , мы получим дробь x + 1 x + 1 · x + 1 и сможем заменить выражение в ее знаменателе на x + 1 . Так мы преобразовали 1 x + 1 в x + 1 x + 1 , избавившись от иррациональности.

Иногда преобразования, которые нужно выполнить, бывают довольно специфическими. Разберем несколько наглядных примеров.

Как преобразовать выражение в знаменателе дроби

Как мы уже говорили, проще всего выполнить преобразование знаменателя.

Условие: освободите дробь 1 2 · 18 + 50 от иррациональности в знаменателе.

Решение

Для начала раскроем скобки и получим выражение 1 2 · 18 + 2 · 50 . Используя основные свойства корней, перейдем к выражению 1 2 · 18 + 2 · 50 . Вычисляем значения обоих выражений под корнями и получаем 1 36 + 100 . Здесь уже можно извлечь корни. В итоге у нас получилась дробь 1 6 + 10 , равная 1 16 . На этом преобразования можно закончить.

Запишем ход всего решения без комментариев:

1 2 · 18 + 50 = 1 2 · 18 + 2 · 50 = = 1 2 · 18 + 2 · 50 = 1 36 + 100 = 1 6 + 10 = 1 16

Ответ: 1 2 · 18 + 50 = 1 16 .

Условие: дана дробь 7 — x ( x + 1 ) 2 . Избавьтесь от иррациональности в знаменателе.

Решение

Ранее в статье, посвященной преобразованиям иррациональных выражений с применением свойств корней, мы упоминали, что при любом A и четных n мы можем заменить выражение A n n на | A | на всей области допустимых значений переменных. Следовательно, в нашем случае мы можем записать так: 7 — x x + 1 2 = 7 — x x + 1 . Таким способом мы освободились от иррациональности в знаменателе.

Ответ: 7 — x x + 1 2 = 7 — x x + 1 .

Избавление от иррациональности методом умножения на корень

Если в знаменателе дроби находится выражение вида A и само выражение A не имеет знаков корней, то мы можем освободиться от иррациональности, просто умножив обе части исходной дроби на A . Возможность этого действия определяется тем, что A на области допустимых значений не будет обращаться в 0 . После умножения в знаменателе окажется выражение вида A · A , которое легко избавить от корней: A · A = A 2 = A . Посмотрим, как правильно применять этот метод на практике.

Условие: даны дроби x 3 и — 1 x 2 + y — 4 . Избавьтесь от иррациональности в их знаменателях.

Решение

Выполним умножение первой дроби на корень второй степени из 3 . Получим следующее:

x 3 = x · 3 3 · 3 = x · 3 3 2 = x · 3 3

Во втором случае нам надо выполнить умножение на x 2 + y — 4 и преобразовать получившееся выражение в знаменателе:

— 1 x 2 + y — 4 = — 1 · x 2 + y — 4 x 2 + y — 4 · x 2 + y — 4 = = — x 2 + y — 4 x 2 + y — 4 2 = — x 2 + y — 4 x 2 + y — 4

Ответ: x 3 = x · 3 3 и — 1 x 2 + y — 4 = — x 2 + y — 4 x 2 + y — 4 .

Если же в знаменателе исходной дроби имеются выражения вида A n m или A m n (при условии натуральных m и n ), нам нужно выбрать такой множитель, чтобы получившееся выражение можно было преобразовать в A n n · k или A n · k n (при натуральном k ). После этого избавиться от иррациональности будет несложно. Разберем такой пример.

Условие: даны дроби 7 6 3 5 и x x 2 + 1 4 15 . Избавьтесь от иррациональности в знаменателях.

Решение

Нам нужно взять натуральное число, которое можно разделить на пять, при этом оно должно быть больше трех. Чтобы показатель 6 стал равен 5 , нам надо выполнить умножение на 6 2 5 . Следовательно, обе части исходной дроби нам придется умножить на 6 2 5 :

7 6 3 5 = 7 · 6 2 5 6 3 5 · 6 2 5 = 7 · 6 2 5 6 3 5 · 6 2 = 7 · 6 2 5 6 5 5 = = 7 · 6 2 5 6 = 7 · 36 5 6

Во втором случае нам потребуется число, большее 15 , которое можно разделить на 4 без остатка. Берем 16 . Чтобы получить такой показатель степени в знаменателе, нам надо взять в качестве множителя x 2 + 1 4 . Уточним, что значение этого выражения не будет 0 ни в каком случае. Вычисляем:

x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 15 · x 2 + 1 4 = = x · x 2 + 1 4 x 2 + 1 4 16 = x · x 2 + 1 4 x 2 + 1 4 4 4 = x · x 2 + 1 4 x 2 + 1 4

Ответ: 7 6 3 5 = 7 · 36 5 6 и x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 .

Избавление от иррациональности методом умножения на сопряженное выражение

Следующий метод подойдет для тех случаев, когда в знаменателе исходной дроби стоят выражения a + b , a — b , a + b , a — b , a + b , a — b . В таких случаях нам надо взять в качестве множителя сопряженное выражение. Поясним смысл этого понятия.

Для первого выражения a + b сопряженным будет a — b , для второго a — b – a + b . Для a + b – a — b , для a — b – a + b , для a + b – a — b , а для a — b – a + b . Иначе говоря, сопряженное выражение – это такое выражение, в котором перед вторым слагаемым стоит противоположный знак.

Давайте рассмотрим, в чем именно заключается данный метод. Допустим, у нас есть произведение вида a — b · a + b . Оно может быть заменено разностью квадратов a — b · a + b = a 2 — b 2 , после чего мы переходим к выражению a − b , лишенному радикалов. Таким образом, мы освободились от иррациональности в знаменателе дроби с помощью умножения на сопряженное выражение. Возьмем пару наглядных примеров.

Условие: избавьтесь от иррациональности в выражениях 3 7 — 3 и x — 5 — 2 .

Решение

В первом случае берем сопряженное выражение, равное 7 + 3 . Теперь производим умножение обеих частей исходной дроби на него:

3 7 — 3 = 3 · 7 + 3 7 — 3 · 7 + 3 = 3 · 7 + 3 7 2 — 3 2 = = 3 · 7 + 3 7 — 9 = 3 · 7 + 3 — 2 = — 3 · 7 + 3 2

Во втором случае нам понадобится выражение — 5 + 2 , которое является сопряженным выражению — 5 — 2 . Умножим на него числитель и знаменатель и получим:

x — 5 — 2 = x · — 5 + 2 — 5 — 2 · — 5 + 2 = = x · — 5 + 2 — 5 2 — 2 2 = x · — 5 + 2 5 — 2 = x · 2 — 5 3

Возможно также перед умножением выполнить преобразование: если мы вынесем из знаменателя сначала минус, считать будет удобнее:

x — 5 — 2 = — x 5 + 2 = — x · 5 — 2 5 + 2 · 5 — 2 = = — x · 5 — 2 5 2 — 2 2 = — x · 5 — 2 5 — 2 = — x · 5 — 2 3 = = x · 2 — 5 3

Ответ: 3 7 — 3 = — 3 · 7 + 3 2 и x — 5 — 2 = x · 2 — 5 3 .

Важно обратить внимание на то, чтобы выражение, полученное в итоге умножения, не обращалось в 0 ни при каких переменных из области допустимых значений для данного выражения.

Условие: дана дробь x x + 4 . Преобразуйте ее так, чтобы в знаменателе не было иррациональных выражений.

Решение

Начнем с нахождения области допустимых значений переменной x . Она определена условиями x ≥ 0 и x + 4 ≠ 0 . Из них можно сделать вывод, что нужная область представляет собой множество x ≥ 0 .

Сопряженное знаменателю выражение представляет собой x — 4 . Когда мы можем выполнить умножение на него? Только в том случае, если x — 4 ≠ 0 . На области допустимых значений это будет равносильно условию x≠16. В итоге мы получим следующее:

x x + 4 = x · x — 4 x + 4 · x — 4 = = x · x — 4 x 2 — 4 2 = x · x — 4 x — 16

Если x будет равен 16 , то мы получим:

x x + 4 = 16 16 + 4 = 16 4 + 4 = 2

Следовательно, x x + 4 = x · x — 4 x — 16 при всех значениях x , принадлежащих области допустимых значений, за исключением 16 . При x = 16 получим x x + 4 = 2 .

Ответ: x x + 4 = x · x — 4 x — 16 , x ∈ [ 0 , 16 ) ∪ ( 16 , + ∞ ) 2 , x = 16 .

Преобразование дробей с иррациональностью в знаменателе с использованием формул суммы и разности кубов

В предыдущем пункте мы выполняли умножение на сопряженные выражения с тем, чтобы потом использовать формулу разности квадратов. Иногда для избавления от иррациональности в знаменателе полезно воспользоваться и другими формулами сокращенного умножения, например, разностью кубов a 3 − b 3 = ( a − b ) · ( a 2 + a · b + b 2 ) . Этой формулой удобно пользоваться, если в знаменателе исходной дроби стоят выражения с корнями третьей степени вида A 3 — B 3 , A 3 2 + A 3 · B 3 + B 3 2 . и т.д. Чтобы применить ее, нам нужно умножить знаменатель дроби на неполный квадрат суммы A 3 2 + A 3 · B 3 + B 3 2 или разность A 3 — B 3 . Точно также можно применить и формулу суммы a 3 + b 3 = ( а ) · ( a 2 − a · b + b 2 ) .

Условие: преобразуйте дроби 1 7 3 — 2 3 и 3 4 — 2 · x 3 + x 2 3 так, чтобы избавиться от иррациональности в знаменателе.

Решение

Для первой дроби нам нужно воспользоваться методом умножения обеих частей на неполный квадрат суммы 7 3 и 2 3 , поскольку потом мы сможем выполнить преобразование с помощью формулы разности кубов:

1 7 3 — 2 3 = 1 · 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 — 2 3 · 7 3 2 + 7 3 · 2 3 + 2 3 2 = = 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 3 — 2 3 3 = 7 2 3 + 7 · 2 3 + 2 2 3 7 — 2 = = 49 3 + 14 3 + 4 3 5

Во второй дроби представим знаменатель как 2 2 — 2 · x 3 + x 3 2 . В этом выражении виден неполный квадрат разности 2 и x 3 , значит, мы можем умножить обе части дроби на сумму 2 + x 3 и воспользоваться формулой суммы кубов. Для этого должно быть соблюдено условие 2 + x 3 ≠ 0 , равносильное x 3 ≠ — 2 и x ≠ − 8 :

3 4 — 2 · x 3 + x 2 3 = 3 2 2 — 2 · x 3 + x 3 2 = = 3 · 2 + x 3 2 2 — 2 · x 3 + x 3 2 · 2 + x 3 = 6 + 3 · x 3 2 3 + x 3 3 = = 6 + 3 · x 3 8 + x

Подставим в дробь — 8 и найдем значение:

3 4 — 2 · 8 3 + 8 2 3 = 3 4 — 2 · 2 + 4 = 3 4

Подведем итоги. При всех x , входящих в область значений исходной дроби (множество R ), за исключением — 8 , мы получим 3 4 — 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x . Если x = 8 , то 3 4 — 2 · x 3 + x 2 3 = 3 4 .

Ответ: 3 4 — 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x , x ≠ 8 3 4 , x = — 8 .

Последовательное применение различных способов преобразования

Часто на практике встречаются более сложные примеры, когда мы не можем освободиться от иррациональности в знаменателе с помощью всего одного метода. Для них нужно последовательно выполнять несколько преобразований или подбирать нестандартные решения. Возьмем одну такую задачу.

Условие: преобразуйте 5 7 4 — 2 4 , чтобы избавиться от знаков корней в знаменателе.

Решение

Выполним умножение обеих частей исходной дроби на сопряженное выражение 7 4 + 2 4 с ненулевым значением. Получим следующее:

5 7 4 — 2 4 = 5 · 7 4 + 2 4 7 4 — 2 4 · 7 4 + 2 4 = = 5 · 7 4 + 2 4 7 4 2 — 2 4 2 = 5 · 7 4 + 2 4 7 — 2

А теперь применим тот же способ еще раз:

5 · 7 4 + 2 4 7 — 2 = 5 · 7 4 + 2 4 · 7 + 2 7 — 2 · 7 + 2 = = 5 · 7 4 + 2 4 · 7 + 2 7 2 — 2 2 = 5 · 7 4 + 7 4 · 7 + 2 7 — 2 = = 5 · 7 4 + 2 4 · 7 + 2 5 = 7 4 + 2 4 · 7 + 2

Ответ: 5 7 4 — 2 4 = 7 4 + 2 4 · 7 + 2 .

Источник

Читайте также:  Народные средства избавиться от кондилом
Оцените статью
Избавляемся от вредителей