Можно ли перевернуть дробь чтобы избавиться от минуса

Отрицательные дроби

Отрицательные дроби — это дроби, числитель или знаменатель которых является отрицательным числом.

Отрицательные дроби могут быть записаны по-разному. Например, рассмотрим два частных:

каждое из них равно отрицательному числу

Каждое из данных частных можно записать в виде дроби, в которой дробная черта заменит знак деления:

-2 : 7 = -2 и 2 : (-7) = 2 .
7 -7

Следовательно, при записи отрицательных дробей знак минус можно ставить перед дробью, перед числителем или перед знаменателем:

2 = -2 = 2 .
7 7 -7

Сложение и вычитание

Чтобы сложить две отрицательные дроби, надо сначала привести их к общему знаменателю, а затем сложить числители по правилам сложения рациональных чисел.

2 + (- 1 ) .
5 4

Приведём дроби к общему знаменателю:

2 + (- 1 ) = -8 + -5 .
5 4 20 20

Теперь сложим числители дробей по правилам сложения рациональных чисел:

-8 + -5 = -8 + (-5) = -13 = 13 .
20 20 20 20 20
2 + (- 1 ) = -8 + -5 =
5 4 20 20

= -8 + (-5) = -13 = 13 .
20 20 20

Для вычисления разности двух отрицательных дробей можно вычитание заменить сложением, взяв уменьшаемое со свои знаком, а вычитаемое с противоположным.

5 — (- 11 ) = 5 + (+ 11 ) =
12 12 12 12

= 5 + 11 = -5 + 11 = 6 .
12 12 12 12

Сложение и вычитание отрицательных дробей производится по правилам сложения обыкновенных дробей, то есть сначала идёт приведение к общему знаменателю, если это нужно, а затем производятся вычисления.

Умножение и деление

Чтобы найти произведение двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем перемножить дроби по правилу умножения дробей.

2 · (- 4 ) = -2 · -4 = -2 · (-4) = 8 .
3 5 3 5 3 · 5 15

Так как при умножении двух отрицательных чисел результат будет положительным, то данный пример можно решить сразу, отбросив оба минуса:

2 · (- 4 ) = 2 · 4 = 2 · 4 = 8 .
3 5 3 5 3 · 5 15

При умножении отрицательной дроби на положительную результат будет отрицательным.

2 · 4 = 2 · 4 = 8 .
3 5 3 · 5 15

К отрицательным дробям можно применять любые законы умножения. Поэтому предыдущий пример можно переписать так:

4 · (- 2 ) = 4 · 2 = 8 .
5 3 5 · 3 15

То есть при умножении положительной дроби на отрицательную результат будет отрицательным.

Чтобы найти частное двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем произвести вычисления.

2 : (- 4 ) = -2 : -4 =
3 5 3 5

= -2 · 5 = -10 = 10 .
3 · (-4) -12 12

Знак результата умножения или деления отрицательных дробей можно узнать по правилам знаков целых чисел.

Источник

Как избавиться от минуса в дроби

Отрицательные дроби – это дроби, числитель или знаменатель которых является отрицательным числом.

Отрицательные дроби могут быть записаны по-разному. Например, рассмотрим два частных:

каждое из них равно отрицательному числу

Каждое из данных частных можно записать в виде дроби, в которой дробная черта заменит знак деления:

-2 : 7 = -2 и 2 : (-7) = 2
7 -7

Следовательно, при записи отрицательных дробей знак минус можно ставить перед дробью, перед числителем или перед знаменателем:

2 = -2 = 2
7 7 -7

Сложение и вычитание

Чтобы сложить две отрицательные дроби, надо сначала привести их к общему знаменателю, а затем сложить числители по правилам сложения рациональных чисел.

2 + (- 1 )
5 4

Приведём дроби к общему знаменателю:

Читайте также:  Муравей ножка болит солнышко скроется
2 + (- 1 ) = -8 + -5
5 4 20 20

Теперь сложим числители дробей по правилам сложения рациональных чисел:

-8 + -5 = -8 + (-5) = -13 = 13
20 20 20 20 20
2 + (- 1 ) = -8 + -5 = -8 + (-5) = -13 = 13
5 4 20 20 20 20 20

Для вычисления разности двух отрицательных дробей можно вычитание заменить сложением, взяв уменьшаемое со свои знаком, а вычитаемое с противоположным.

5 — (- 11 ) = 5 + (+ 11 ) = 5 + 11 = -5 + 11 = 6
12 12 12 12 12 12 12 12

Сложение и вычитание отрицательных дробей производится по правилам сложения обыкновенных дробей, то есть сначала идёт приведение к общему знаменателю, если это нужно, а затем производятся вычисления.

Умножение и деление

Чтобы найти произведение двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем перемножить дроби по правилу умножения дробей.

2 · (- 4 ) = -2 · -4 = -2 · (-4) = 8
3 5 3 5 3 · 5 15

Так как при умножении двух отрицательных чисел результат будет положительным, то данный пример можно решить, сразу отбросив оба минуса:

2 · (- 4 ) = 2 · 4 = 2 · 4 = 8
3 5 3 5 3 · 5 15

При умножении отрицательной дроби на положительную результат будет отрицательным.

2 · 4 = 2 · 4 = 8
3 5 3 · 5 15

К отрицательным дробям можно применять любые законы умножения. Поэтому предыдущий пример можно переписать так:

4 · (- 2 ) = 4 · 2 = 8
5 3 5 · 3 15

То есть при умножении положительной дроби на отрицательную результат будет отрицательным.

Чтобы найти частное двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем произвести вычисления.

2 : (- 4 ) = -2 : -4 = -2 · 5 = -10 = 10
3 5 3 5 3 · (-4) -12 12

Знак результата умножения или деления отрицательных дробей можно узнать по правилам знаков целых чисел.

Прежде чем перейти к изучению определения «отрицательная степень» рекомендуем повторно прочитать урок «Степень» и «Свойства степеней».

Необходимо уверенно понимать, что такое положительная степень числа и уверенно использовать её свойства в решении примеров.

Как возвести число в отрицательную степень

Чтобы возвести число в отрицательную степень нужно:

  • «перевернуть» число. Записать его в виде дроби с единицой наверху (в числителе) и с исходным числом в степени внизу;
  • заменить отрицательную степень на положительную ;
  • возвести число в положительную степень.

Общая формула возведения в отрицательную степень выглядит следующим образом.

,где a ≠ 0, n ∈ z ( n принадлежит целым числам).

Примеры возведения в отрицательную степень.

    6 −2 =

    1
    6 2
1
36

(−3) −3 =

1
(−3) 3
1
27

0,2 −2 =

1
0,2 2

Любое число в нулевой степени — единица.

Примеры возведения в нулевую степень.

Как найти 10 в минус 1 степени

В уроке 8 класса «Стандартный вид числа» мы уже сталкивались с записью:

Теперь, зная определение отрицательной степени, давайте разберемся, почему « 10 » в минус первой степени равно « 0,1 ».

Возведем « 10 −1 » по правилам отрицательной степени. Перевернем « 10 » и запишем её в виде дроби «

» и заменим отрицательную степень « −1 » на
положительную степень « 1 ».

1
10 1

Возведем « 10 » в « 1 » степень. Помним, что любое число в первой степени равно самому числу.

1
10 1

Теперь по определению десятичной дроби запишем обыкновенную дробь в виде десятичной.

1
10 1

По такому же принципу можно найти « 10 » в минус второй, третьей и т.д.

Для упрощения перевода « 10 » в минус первую, вторую и т.д степени, нужно запомнить правило:
«Количество нулей после запятой равно положительному значению степени минус один ».

Проверим правило выше для « 10 −2 ».

Т.к. у нас степень « −2 », значит, будет всего один ноль (положительное значение степени « 2 − 1 = 1 ». Сразу после запятой ставим один ноль и за ним « 1 ».

Читайте также:  Как обработать ушного клеща уши коту

Рассмотрим « 10 −1 ».

Т.к. у нас степень « −1 », значит, нулей после запятой не будет (положительное значение степени « 1 − 1 = 0 ». Сразу после запятой ставим « 1 ».

То же самое правило работает и для « 10 −12 ». При переводе в десятичную дробь будет « 12 − 1 = 11 » нулей и « 1 » в конце.

Как возвести в отрицательную степень дробь

Чтобы возвести дробь в отрицательную степень нужно:

  • «перевернуть» дробь;
  • заменить отрицательную степень на положительную ;
  • возвести дробь в положительную степень.

Пример. Требуется возвести в отрицательную степень дробь.

) −3 =
Перевернем дробь «

» и заменим отрицательную степень « −3 » на положительную « 3 ».
(

Возведем дробь в положительную степень по правилу возведения дроби в положительную степень. Т.е. возведем и числитель « 3 », и знаменатель « 10 » в третью степень.

3 3
10 3
27
1000

Для более грамотного ответа запишем полученный результат в виде десятичной дроби.

3 3
10 3
27
1000

Как возвести отрицательное число в отрицательную степень

Как и при возведении отрицательного числа в положительную степень, в первую очередь необходимо определить конечный знак результата возведения в степень. Вспомним основные правила еще раз.

Отрицательное число, возведённое в чётную степень, — число положительное .

Отрицательное число, возведённое в нечётную степень, — число отрицательное .

Перевернем число « −5 » и заменим отрицательную степень « −2 »
на положительную « 2 ».

Так как степень « 2 » — четная , значит, результат возведения в степень будет положительный . Поэтому убираем знак минуса при раскрытии скобок.

Далее откроем скобки и возведем во вторую степень и числитель « 1 »,
и знаменатель « 5 ».

1 2
5 2

Как возвести отрицательную дробь в отрицательную степень

Конечный знак результата возведения в степень отрицательной дроби определяется по тем же правилам, что и для целого отрицательного числа.

Отрицательная дробь, возведённая в чётную степень, — дробь положительная .

Отрицательная дробь, возведённая в нечётную степень, — дробь отрицательная .

Разберемся на примере. Задание: возвести отрицательную дробь « (−

По правилу возведения дроби в отрицательную степень перевернем дробь и заменим отрицательную степень « −3 » на положительную « 3 ».

Теперь определим конечный знак результата возведения в « 3 » степень.

Степень « 3 » — нечетная , значит, по правилу возведения отрицательного числа в степень дробь останется отрицательной .

Нам остается только раскрыть скобки и возвести в степень и числитель « 3 », и знаменатель « 2 » в третью степень.

3 3
2 3

Для окончательного ответа выделим целую часть из дроби.

3 3
2 3

Рассмотрим другой пример возведения отрицательной дроби в отрицательную степень.

Правило возведения отрицательного числа в степень гласит: если степень четная , значит, результат возведения будет положительным .

11 2
9 2
121
81

Свойства отрицательной степени

Все свойства степени, которые используются для положительной степени, точно также применяются и для отрицательной степени.

В этом уроке мы не будем повторно подробно разбирать каждое свойство степени, но еще раз приведем основные формулы свойств степени и покажем примеры их использования.

Запомните!

  • a m · a n = a m + n
  • a m
    a n

= a m − n

  • (a n ) m = a n · m
  • (a · b) n = a n · b n
  • Примеры решений заданий с отрицательной
    степенью

    Колягин 9 класс. Задание № 1

    Представить в виде степени.

    2) a 6 · b 6 = (ab) 6

    Колягин 9 класс. Задание № 5

    Записать в виде степени с отрицательным числом.

    Краткое описание документа:

    Почему этой теме посвящен отдельный видеоурок? Дело в том, что встречая дроби с отрицательными числами, многие ученики часто допускают ошибки, которые, впрочем, легко избежать, если рассмотреть данный метод.

    Данный метод, который мы сейчас рассмотрим, основывается на том, чтобы привести дробь к удобному для нас виду, с которым мы уже ничего не напутаем.

    Для начала давайте посмотрим на элементарные примеры:

    1) Сколько будет «двенадцать делить на минус четыре». Конечно же «минус три».

    2) А сколько будет «минус двенадцать разделить на четыре». Тоже «минус три»!

    3) А если вот так: «минус. двенадцать делить на четыре»? И здесь также получим «минус три».

    А теперь, если мы вспомним, что дробь — это деление, и черту дроби можно написать вместо знака деления, то получим следующее.

    Ну а так как эти дроби равны одному и тому же числу, то значит они равны между собой.

    А из этой записи мы видим, что совершенно неважно где стоит минус: перед чертой дроби, в числителе или знаменателе! Результат получается одинаковым.

    Давайте применим теперь это знание к решению конкретного примера.

    Минус одна четвертая плюс пять третьих минус три пятых минус семь вторых.

    Первым шагом превратим эту запись в сложение четырех слагаемых. То есть из минусов сделаем плюсы, ведь мы знаем, что «минус а» то же, что и «плюс. минус а».

    Значит «минус одна четвертая» — это «плюс минус одна четвертая» — ну здесь плюс можно не писать, так как перед плюсом ничего нет. Затем, «минус три пятых» — это «плюс. минус три пятых». И «минус семь вторых» — это «плюс. минус семь вторых».

    Ну а теперь эти минусы перед знаками дробей можно убрать в числители. и тогда скобки уже будут не нужны. мы получим сложение четырех дробей с разными знаменателями.

    Решить этот пример уже гораздо проще, можно не бояться запутаться в минусах.

    Приводим дроби к общему знаменателю. Здесь он будет равен. шестьдесят.

    Числитель и знаменатель первой дроби доумножаем на пятнадцать, второй — на двадцать, третьей — на двенадцать и четвертой — на тридцать.

    Пишем общий знаменатель — шестьдесят. А в общий числитель записываем по-порядку те числа, которые у нас получатся здесь: минус пятнадцать, плюс сто, минус тридцать шесть, минус двести десять. Если бы мы не выполнили первый шаг и вот здесь у нас остались бы стоять минусы, то мы легко могли бы запутаться со знаками. А так, когда здесь только плюсы, мы просто записываем в числитель полученные числа с такими знаками, с какими мы их и получили. Если «пять умножить на двадцать» было «сто», то и пишем «плюс сто». А если «минус три» умножить на двенадцать — это «минус тридцать шесть», то так и пишем минус тридцать шесть.

    В этом и есть секрет данного метода. И какие бы сложные ни были примеры, применяя данный метод, вы никогда не запутаетесь в знаках.

    Ну а здесь нам осталось посчитать числитель. Это будет минус сто шестьдесят один. Минус можно написать перед знаком дроби. Кстати, в ответе всегда лучше именно перед знаком дроби писать минус. Так принято. Ну можно еще выделить целую часть. Это будет. минус две целых сорок одна шестидесятая.

    Итак, повторим наш метод:

    «В примерах со сложением/вычитанием дробей первым шагом превращаем вычитание в сложение (для этого убираем знак «минус» в скобки). Далее переносим знак «минус» перед дробями в числители и просто выполняем сложение дробей».

    Важный момент — вы должны не только запомнить это правило, но четко понимать его, чтобы успешно применять при решении примеров.

    В следующем уроке мы рассмотрим очень важные замечания, о которых вам всегда нужно помнить, решая примеры с дробями.

    Источник

    Оцените статью
    Избавляемся от вредителей