- Отрицательные дроби
- Сложение и вычитание
- Умножение и деление
- Как избавиться от минуса в дроби
- Сложение и вычитание
- Умножение и деление
- Как возвести число в отрицательную степень
- Как найти 10 в минус 1 степени
- Как возвести в отрицательную степень дробь
- Как возвести отрицательное число в отрицательную степень
- Как возвести отрицательную дробь в отрицательную степень
- Свойства отрицательной степени
- Примеры решений заданий с отрицательной степенью
- Колягин 9 класс. Задание № 1
- Колягин 9 класс. Задание № 5
Отрицательные дроби
Отрицательные дроби — это дроби, числитель или знаменатель которых является отрицательным числом.
Отрицательные дроби могут быть записаны по-разному. Например, рассмотрим два частных:
каждое из них равно отрицательному числу
Каждое из данных частных можно записать в виде дроби, в которой дробная черта заменит знак деления:
-2 : 7 | = | -2 | и | 2 : (-7) | = | 2 | . |
7 | -7 |
Следовательно, при записи отрицательных дробей знак минус можно ставить перед дробью, перед числителем или перед знаменателем:
— | 2 | = | -2 | = | 2 | . |
7 | 7 | -7 |
Сложение и вычитание
Чтобы сложить две отрицательные дроби, надо сначала привести их к общему знаменателю, а затем сложить числители по правилам сложения рациональных чисел.
— | 2 | + (- | 1 | ) | . |
5 | 4 |
Приведём дроби к общему знаменателю:
— | 2 | + (- | 1 | ) = | -8 | + | -5 | . |
5 | 4 | 20 | 20 |
Теперь сложим числители дробей по правилам сложения рациональных чисел:
-8 | + | -5 | = | -8 + (-5) | = | -13 | = | — | 13 | . |
20 | 20 | 20 | 20 | 20 |
— | 2 | + (- | 1 | ) = | -8 | + | -5 | = |
5 | 4 | 20 | 20 |
= | -8 + (-5) | = | -13 | = | — | 13 | . |
20 | 20 | 20 |
Для вычисления разности двух отрицательных дробей можно вычитание заменить сложением, взяв уменьшаемое со свои знаком, а вычитаемое с противоположным.
— | 5 | — (- | 11 | ) = | — | 5 | + (+ | 11 | ) = |
12 | 12 | 12 | 12 |
= | — | 5 | + | 11 | = | -5 + 11 | = | 6 | . |
12 | 12 | 12 | 12 |
Сложение и вычитание отрицательных дробей производится по правилам сложения обыкновенных дробей, то есть сначала идёт приведение к общему знаменателю, если это нужно, а затем производятся вычисления.
Умножение и деление
Чтобы найти произведение двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем перемножить дроби по правилу умножения дробей.
— | 2 | · (- | 4 | ) = | -2 | · | -4 | = | -2 · (-4) | = | 8 | . |
3 | 5 | 3 | 5 | 3 · 5 | 15 |
Так как при умножении двух отрицательных чисел результат будет положительным, то данный пример можно решить сразу, отбросив оба минуса:
— | 2 | · (- | 4 | ) = | 2 | · | 4 | = | 2 · 4 | = | 8 | . |
3 | 5 | 3 | 5 | 3 · 5 | 15 |
При умножении отрицательной дроби на положительную результат будет отрицательным.
— | 2 | · | 4 | = | — | 2 · 4 | = | — | 8 | . |
3 | 5 | 3 · 5 | 15 |
К отрицательным дробям можно применять любые законы умножения. Поэтому предыдущий пример можно переписать так:
4 | · (- | 2 | ) = | — | 4 · 2 | = | — | 8 | . |
5 | 3 | 5 · 3 | 15 |
То есть при умножении положительной дроби на отрицательную результат будет отрицательным.
Чтобы найти частное двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем произвести вычисления.
— | 2 | : (- | 4 | ) = | -2 | : | -4 | = |
3 | 5 | 3 | 5 |
= | -2 · 5 | = | -10 | = | 10 | . |
3 · (-4) | -12 | 12 |
Знак результата умножения или деления отрицательных дробей можно узнать по правилам знаков целых чисел.
Источник
Как избавиться от минуса в дроби
Отрицательные дроби – это дроби, числитель или знаменатель которых является отрицательным числом.
Отрицательные дроби могут быть записаны по-разному. Например, рассмотрим два частных:
каждое из них равно отрицательному числу
Каждое из данных частных можно записать в виде дроби, в которой дробная черта заменит знак деления:
-2 : 7 | = | -2 | и | 2 : (-7) | = | 2 |
7 | -7 |
Следовательно, при записи отрицательных дробей знак минус можно ставить перед дробью, перед числителем или перед знаменателем:
— | 2 | = | -2 | = | 2 |
7 | 7 | -7 |
Сложение и вычитание
Чтобы сложить две отрицательные дроби, надо сначала привести их к общему знаменателю, а затем сложить числители по правилам сложения рациональных чисел.
— | 2 | + (- | 1 | ) |
5 | 4 |
Приведём дроби к общему знаменателю:
— | 2 | + (- | 1 | ) = | -8 | + | -5 |
5 | 4 | 20 | 20 |
Теперь сложим числители дробей по правилам сложения рациональных чисел:
-8 | + | -5 | = | -8 + (-5) | = | -13 | = | — | 13 |
20 | 20 | 20 | 20 | 20 |
— | 2 | + (- | 1 | ) = | -8 | + | -5 | = | -8 + (-5) | = | -13 | = | — | 13 |
5 | 4 | 20 | 20 | 20 | 20 | 20 |
Для вычисления разности двух отрицательных дробей можно вычитание заменить сложением, взяв уменьшаемое со свои знаком, а вычитаемое с противоположным.
— | 5 | — (- | 11 | ) = | — | 5 | + (+ | 11 | ) = | — | 5 | + | 11 | = | -5 + 11 | = | 6 |
12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Сложение и вычитание отрицательных дробей производится по правилам сложения обыкновенных дробей, то есть сначала идёт приведение к общему знаменателю, если это нужно, а затем производятся вычисления.
Умножение и деление
Чтобы найти произведение двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем перемножить дроби по правилу умножения дробей.
— | 2 | · (- | 4 | ) = | -2 | · | -4 | = | -2 · (-4) | = | 8 |
3 | 5 | 3 | 5 | 3 · 5 | 15 |
Так как при умножении двух отрицательных чисел результат будет положительным, то данный пример можно решить, сразу отбросив оба минуса:
— | 2 | · (- | 4 | ) = | 2 | · | 4 | = | 2 · 4 | = | 8 |
3 | 5 | 3 | 5 | 3 · 5 | 15 |
При умножении отрицательной дроби на положительную результат будет отрицательным.
— | 2 | · | 4 | = | — | 2 · 4 | = | — | 8 |
3 | 5 | 3 · 5 | 15 |
К отрицательным дробям можно применять любые законы умножения. Поэтому предыдущий пример можно переписать так:
4 | · (- | 2 | ) = | — | 4 · 2 | = | — | 8 |
5 | 3 | 5 · 3 | 15 |
То есть при умножении положительной дроби на отрицательную результат будет отрицательным.
Чтобы найти частное двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем произвести вычисления.
— | 2 | : (- | 4 | ) = | -2 | : | -4 | = | -2 · 5 | = | -10 | = | 10 |
3 | 5 | 3 | 5 | 3 · (-4) | -12 | 12 |
Знак результата умножения или деления отрицательных дробей можно узнать по правилам знаков целых чисел.
Прежде чем перейти к изучению определения «отрицательная степень» рекомендуем повторно прочитать урок «Степень» и «Свойства степеней».
Необходимо уверенно понимать, что такое положительная степень числа и уверенно использовать её свойства в решении примеров.
Как возвести число в отрицательную степень
Чтобы возвести число в отрицательную степень нужно:
- «перевернуть» число. Записать его в виде дроби с единицой наверху (в числителе) и с исходным числом в степени внизу;
- заменить отрицательную степень на положительную ;
- возвести число в положительную степень.
Общая формула возведения в отрицательную степень выглядит следующим образом.
,где a ≠ 0, n ∈ z ( n принадлежит целым числам).
Примеры возведения в отрицательную степень.
- 6 −2 =
1 |
6 2 |
1 |
36 |
(−3) −3 =
1 |
(−3) 3 |
1 |
27 |
0,2 −2 =
1 |
0,2 2 |
Любое число в нулевой степени — единица.
Примеры возведения в нулевую степень.
Как найти 10 в минус 1 степени
В уроке 8 класса «Стандартный вид числа» мы уже сталкивались с записью:
Теперь, зная определение отрицательной степени, давайте разберемся, почему « 10 » в минус первой степени равно « 0,1 ».
Возведем « 10 −1 » по правилам отрицательной степени. Перевернем « 10 » и запишем её в виде дроби «
» и заменим отрицательную степень « −1 » на
положительную степень « 1 ».
1 |
10 1 |
Возведем « 10 » в « 1 » степень. Помним, что любое число в первой степени равно самому числу.
1 |
10 1 |
Теперь по определению десятичной дроби запишем обыкновенную дробь в виде десятичной.
1 |
10 1 |
По такому же принципу можно найти « 10 » в минус второй, третьей и т.д.
Для упрощения перевода « 10 » в минус первую, вторую и т.д степени, нужно запомнить правило:
«Количество нулей после запятой равно положительному значению степени минус один ».
Проверим правило выше для « 10 −2 ».
Т.к. у нас степень « −2 », значит, будет всего один ноль (положительное значение степени « 2 − 1 = 1 ». Сразу после запятой ставим один ноль и за ним « 1 ».
Рассмотрим « 10 −1 ».
Т.к. у нас степень « −1 », значит, нулей после запятой не будет (положительное значение степени « 1 − 1 = 0 ». Сразу после запятой ставим « 1 ».
То же самое правило работает и для « 10 −12 ». При переводе в десятичную дробь будет « 12 − 1 = 11 » нулей и « 1 » в конце.
Как возвести в отрицательную степень дробь
Чтобы возвести дробь в отрицательную степень нужно:
- «перевернуть» дробь;
- заменить отрицательную степень на положительную ;
- возвести дробь в положительную степень.
Пример. Требуется возвести в отрицательную степень дробь.
) −3 =
Перевернем дробь «
» и заменим отрицательную степень « −3 » на положительную « 3 ».
(
Возведем дробь в положительную степень по правилу возведения дроби в положительную степень. Т.е. возведем и числитель « 3 », и знаменатель « 10 » в третью степень.
3 3 |
10 3 |
27 |
1000 |
Для более грамотного ответа запишем полученный результат в виде десятичной дроби.
3 3 |
10 3 |
27 |
1000 |
Как возвести отрицательное число в отрицательную степень
Как и при возведении отрицательного числа в положительную степень, в первую очередь необходимо определить конечный знак результата возведения в степень. Вспомним основные правила еще раз.
Отрицательное число, возведённое в чётную степень, — число положительное .
Отрицательное число, возведённое в нечётную степень, — число отрицательное .
Перевернем число « −5 » и заменим отрицательную степень « −2 »
на положительную « 2 ».
Так как степень « 2 » — четная , значит, результат возведения в степень будет положительный . Поэтому убираем знак минуса при раскрытии скобок.
Далее откроем скобки и возведем во вторую степень и числитель « 1 »,
и знаменатель « 5 ».
1 2 |
5 2 |
Как возвести отрицательную дробь в отрицательную степень
Конечный знак результата возведения в степень отрицательной дроби определяется по тем же правилам, что и для целого отрицательного числа.
Отрицательная дробь, возведённая в чётную степень, — дробь положительная .
Отрицательная дробь, возведённая в нечётную степень, — дробь отрицательная .
Разберемся на примере. Задание: возвести отрицательную дробь « (−
По правилу возведения дроби в отрицательную степень перевернем дробь и заменим отрицательную степень « −3 » на положительную « 3 ».
Теперь определим конечный знак результата возведения в « 3 » степень.
Степень « 3 » — нечетная , значит, по правилу возведения отрицательного числа в степень дробь останется отрицательной .
Нам остается только раскрыть скобки и возвести в степень и числитель « 3 », и знаменатель « 2 » в третью степень.
3 3 |
2 3 |
Для окончательного ответа выделим целую часть из дроби.
3 3 |
2 3 |
Рассмотрим другой пример возведения отрицательной дроби в отрицательную степень.
Правило возведения отрицательного числа в степень гласит: если степень четная , значит, результат возведения будет положительным .
11 2 |
9 2 |
121 |
81 |
Свойства отрицательной степени
Все свойства степени, которые используются для положительной степени, точно также применяются и для отрицательной степени.
В этом уроке мы не будем повторно подробно разбирать каждое свойство степени, но еще раз приведем основные формулы свойств степени и покажем примеры их использования.
Запомните!
- a m · a n = a m + n
-
a m a n
= a m − n
Примеры решений заданий с отрицательной
степенью
Колягин 9 класс. Задание № 1
Представить в виде степени.
2) a 6 · b 6 = (ab) 6
Колягин 9 класс. Задание № 5
Записать в виде степени с отрицательным числом.
Краткое описание документа:
Почему этой теме посвящен отдельный видеоурок? Дело в том, что встречая дроби с отрицательными числами, многие ученики часто допускают ошибки, которые, впрочем, легко избежать, если рассмотреть данный метод.
Данный метод, который мы сейчас рассмотрим, основывается на том, чтобы привести дробь к удобному для нас виду, с которым мы уже ничего не напутаем.
Для начала давайте посмотрим на элементарные примеры:
1) Сколько будет «двенадцать делить на минус четыре». Конечно же «минус три».
2) А сколько будет «минус двенадцать разделить на четыре». Тоже «минус три»!
3) А если вот так: «минус. двенадцать делить на четыре»? И здесь также получим «минус три».
А теперь, если мы вспомним, что дробь — это деление, и черту дроби можно написать вместо знака деления, то получим следующее.
Ну а так как эти дроби равны одному и тому же числу, то значит они равны между собой.
А из этой записи мы видим, что совершенно неважно где стоит минус: перед чертой дроби, в числителе или знаменателе! Результат получается одинаковым.
Давайте применим теперь это знание к решению конкретного примера.
Минус одна четвертая плюс пять третьих минус три пятых минус семь вторых.
Первым шагом превратим эту запись в сложение четырех слагаемых. То есть из минусов сделаем плюсы, ведь мы знаем, что «минус а» то же, что и «плюс. минус а».
Значит «минус одна четвертая» — это «плюс минус одна четвертая» — ну здесь плюс можно не писать, так как перед плюсом ничего нет. Затем, «минус три пятых» — это «плюс. минус три пятых». И «минус семь вторых» — это «плюс. минус семь вторых».
Ну а теперь эти минусы перед знаками дробей можно убрать в числители. и тогда скобки уже будут не нужны. мы получим сложение четырех дробей с разными знаменателями.
Решить этот пример уже гораздо проще, можно не бояться запутаться в минусах.
Приводим дроби к общему знаменателю. Здесь он будет равен. шестьдесят.
Числитель и знаменатель первой дроби доумножаем на пятнадцать, второй — на двадцать, третьей — на двенадцать и четвертой — на тридцать.
Пишем общий знаменатель — шестьдесят. А в общий числитель записываем по-порядку те числа, которые у нас получатся здесь: минус пятнадцать, плюс сто, минус тридцать шесть, минус двести десять. Если бы мы не выполнили первый шаг и вот здесь у нас остались бы стоять минусы, то мы легко могли бы запутаться со знаками. А так, когда здесь только плюсы, мы просто записываем в числитель полученные числа с такими знаками, с какими мы их и получили. Если «пять умножить на двадцать» было «сто», то и пишем «плюс сто». А если «минус три» умножить на двенадцать — это «минус тридцать шесть», то так и пишем минус тридцать шесть.
В этом и есть секрет данного метода. И какие бы сложные ни были примеры, применяя данный метод, вы никогда не запутаетесь в знаках.
Ну а здесь нам осталось посчитать числитель. Это будет минус сто шестьдесят один. Минус можно написать перед знаком дроби. Кстати, в ответе всегда лучше именно перед знаком дроби писать минус. Так принято. Ну можно еще выделить целую часть. Это будет. минус две целых сорок одна шестидесятая.
Итак, повторим наш метод:
«В примерах со сложением/вычитанием дробей первым шагом превращаем вычитание в сложение (для этого убираем знак «минус» в скобки). Далее переносим знак «минус» перед дробями в числители и просто выполняем сложение дробей».
Важный момент — вы должны не только запомнить это правило, но четко понимать его, чтобы успешно применять при решении примеров.
В следующем уроке мы рассмотрим очень важные замечания, о которых вам всегда нужно помнить, решая примеры с дробями.
Источник