Хромосомы и пол
Возможно ли непорочное зачатие?
В XIX в. мюнхенский зоолог Карл Зибольд открыл явление «непорочного зачатия» у некоторых насекомых. Так размножаются, например, обычные тли. Летом их самки без всяких предварительных контактов с самцами откладывают яйца, из которых благополучно вылупляются самки второго поколения. Те, в свою очередь, снова «беспорочно» дают начало новому поколению самок. За летний сезон таких «неполовых» генераций может быть до десяти. В результате фактически бесполое размножение вредителей идет быстро, буквально лавинообразно! Вот, кстати, почему тли порой так быстро оккупируют полюбившиеся им молодые побеги. Даже одна самка, оказавшаяся в силу случая на подходящем растении, может стать праматерью нескольких поколений насекомых. Времени на поиск брачного партнера тратить не надо!
Зибольд назвал такой «непорочный» тип размножения партеногенезом (от греч. parthenos – девственница). Партеногенетическое увеличение численности у тлей может продолжаться вплоть до осени, когда, наконец, в результате укорочения светового дня из некоторых яиц не появляются тли-самцы, которые тут же спешат исполнить свой мужской долг. Кстати, обратите внимание на любопытный факт: в данном случае на определение пола оказывает влияние обычный свет! Самцы спариваются с самками. Оплодотворенные яйца зимуют, и весной из них появляются новые самки тлей.
Прослышав про удивительное открытие Зибольда, его вскоре посетил католический архиепископ, который, несмотря на свой сан, живо интересовался достижениями науки. «Теперь и для девы Марии можно объяснить тот же процесс!» – не скрывал он своего ликования. Зибольд как истинный ученый относился к таким смелым предположениям настороженно. Нельзя же, в самом деле, прямо переносить данные, полученные при изучении насекомых, на позвоночных, тем более на людей!
Между тем прошло более ста лет, и в 1958 г. сотрудник Зоологического института Армянской академии наук Илья Даревский обнаружил, что все пойманные им на берегу горного озера Севан экземпляры скальных ящериц Lacerta saxicola являются самками. При всем старании самцов этого вида обнаружить не удавалось. Вместе с тем не вызывало сомнений, что ящерицы-самки не особо грустили без своих кавалеров. Они откладывали яйца, из которых в срок вылуплялись опять-таки одни самки. Этот факт был позже подтвержден в лаборатории, где в террариумах было выращено несколько поколений скальных ящериц, совершенно не ведавших никаких радостей спаривания. Значит, партеногенез у позвоночных возможен? Да! Быть может, он случается, хотя бы изредка, и у млекопитающих?
К тому времени механизм партеногенеза биологам был уже хорошо известен. В одних случаях в будущей яйцеклетке не проходило редукционное деление – мейоз. В результате яйцеклетка оставалась диплоидной, то есть содержала двойной набор хромосом. Сперматозоиды для ее развития оказывались не нужны. Неоплодотворенная диплоидная яйцеклетка начинала делиться, возникали личинка, зародыш, а потом и молодая особь, которая была точной копией своей матери. По сути, такой тип партеногенеза можно рассматривать как естественно протекающий в природе процесс клонирования организмов. В других случаях мейоз в будущей яйцеклетке проходил. В результате число хромосом уменьшалось вдвое. Однако и тут при партеногенезе дело обходилось без оплодотворения. Гаплоидное ядро яйцеклетки (с одиночным набором хромосом) начинало делиться. В результате появлялось два ядра, каждое из которых содержало гаплоидный набор хромосом. Затем такие ядра сливались друг с другом. Диплоидный набор хромосом восстанавливался, и в дальнейшем из такого, опять-таки неоплодотворенного сперматозоидом, яйца развивалась новая особь.
Партеногенез оказался достаточно распространенным явлением в мире живой природы. Он был обнаружен у многих растений, беспозвоночных и даже позвоночных, за исключением млекопитающих. У обычных медоносных пчел, например, самцы-трутни появляются в конце лета именно благодаря партеногенезу. Если яйцо пчелы, проходя по яйцеводам самки, оплодотворяется сперматозоидами самца, хранящимися в течение всей ее жизни в особом резервуаре, на свет появляется рабочая пчела женского пола. Все ее клетки диплоидны. Если же такое яйцо не оплодотворяется, из него развивается гаплоидный трутень-самец. Стоп! Может, это и есть модель непорочного зачатия, которое упоминается в Библии?!
К сожалению, хромосомное определение пола у перепончатокрылых насекомых происходит не так, как у людей. Как вы уже знаете, особи женского пола у млекопитающих обладают двумя Х-хромосомами. Генотип самки – ХХ. Генотип самца – XY. Следовательно, если даже предположить, что созревающая в яичнике женщины яйцеклетка начала развиваться путем партеногенеза, в результате возникнет диплоидная клетка с хромосомами ХХ. Хромосоме Y просто неоткуда взяться! Значит, в результате такого «непорочного зачатия» (читай – партеногенеза) на свет может появиться только девочка – точная копия своей матери. А Христос, как известно, был мужчиной.
Впрочем, в конце XX в. индийский биолог Чандра из Бангалора выдвинул любопытную гипотезу определения пола, которая проливает свет на проблему непорочного зачатия. Согласно взглядам Чандры развитие зародыша по мужскому пути у млекопитающих и у человека определяется лишь дозой «полового» гена, копии которого присутствуют и в Х-, и в Y-хромосоме. Как вы уже знаете, в «женских» клетках одна из Х-хромосом инактивируется и превращается в компактное тельце Барра. В результате в таких клетках работает только одна копия «полового гена», которой оказывается недостаточно, чтобы «запустить» развитие клеток и организма в целом по мужскому сценарию. В клетках с хромосомами XY активны две копии этого гена. Именно поэтому из клеток с таким генотипом развиваются особи мужского пола. Следовательно, если предположить, что в женской яйцеклетке с хромосомами ХХ произошла дупликация гена, ответственного за половую детерминацию, то есть количество таких генов увеличилось (в принципе мутации такого рода в хромосомах случаются), то согласно гипотезе Чандры такая яйцеклетка могла дать начало мужской особи! Разумеется, при этом надо еще допустить, что такая мутантная яйцеклетка будет способна к партеногенезу.
Не кажется ли вам, что получается слишком много допущений? Хотя, впрочем, чего не бывает. Вот, например, английские исследователи обнаружили в конце XX в. трех девушек, у которых клетки тела имели хромосомный набор XY. Вероятность появления таких аномалий очень низка – порядка 1/100 000. Предполагается, что в одном из «половых» генов таких девушек произошла мутация, которая сделала этот ген или его белковый продукт неактивными. Почему бы не допустить, что бывают и другие хромосомные или генные мутации, которые могут заставить клетки с двумя «женскими» хромосомами ХХ развиваться по мужскому пути?
С другой стороны, специалистам известны случаи, когда на свет появляются мальчики с хромосомным набором ХХ. Вероятность такого рождения, которое ведет к появлению стерильных мужчин, оценивается примерно как 1/10 000. Причины возникновения такой ситуации совершенно не ясны. Выдвигалась гипотеза, согласно которой изначальный хромосомный набор, возникающий при оплодотворении в таких случаях был XXY (то есть как в случае синдрома Клайнфельтера). Затем, на самых первых этапах деления клеток зародыша, хромосома Y терялась, успев, однако, оказать свое влияние на определение пола. К сожалению, это объяснение не выдерживает критики, поскольку известно, что гены Y-хромосомы оказывают влияние на половую детерминацию зачатков половых желез у зародыша человека на втором месяце внутриутробного развития. В это время зародыш состоит уже из миллиардов клеток, и все они потерять свою Y-хромосому никак не могут. Так что в целом мужчины с двумя XX-хромосомами остаются биологической загадкой.
Из этого следует, что данные современной науки о хромосомном определении пола у людей не должны поколебать уверенности верующих в возможности всевозможных «чудес». Что же порой бывает, когда такое неверие закрадывается в их души, ярко демонстрирует следующий курьезный пример. В центре одного из древнейших городов Англии – Йорке – стоит величественный собор. Летом 1984 г. одно из его крыльев было закрыто лесами – шли ремонтные работы. 8 июля один из местных проповедников использовал их как оригинальную кафедру. Стоя прямо на досках, он обратился к своей пастве с необычной проповедью. В ней он, в частности, усомнился в одном из догматов католической церкви и подверг критике возможность непорочного зачатия. На дворе ведь заканчивался XX в., и надо было казаться современным. На следующий день прямо на месте злополучной проповеди случился пожар, в результате которого треснуло и частично расплавилось знаменитое Окно Роз, изображавшее древние символы борьбы за власть Йорков и Ланкастеров. Случайность? Быть может, хотя такие случайности обычно производят на верующих большее впечатление, чем данные современной науки.
Источник
Генетика пола. Механизмы определения пола. Наследование признаков, сцепленных с полом.
Пол — это совокупность признаков и свойств организма , определяющих его участие в размножении
Первичные половые признаки — морфофизиологические особенности организма , обеспечивающие образование гамет , их сближение и соединение при оплодотворении — наружные и внутренние органы размножения ( половые железы и выводящие протоки , добавочные железы , органы внутриутробного развития , наружные половые органы и т. д.)
Вторичные половые признаки — совокупность внешних признаков и особенностей , обеспечивающих обнаружение и привлечение партнёра ( их развитие контролируется гормонами , синтезируемыми первичными половыми органами — половыми железами )
· Подавляющее большинство животных предствлено особями двух полов — мужского и женского
· Соотношение полов в популяциях раздельнополых организмов в среднем 1 : 1 ( у людей в среднем на каждые 100 девочек рождается 106 мальчиков ) ; такое соотношение полов обеспечивает максимальную вероятность встречи самцов и самок и поддержание оптимальной численности популяций ; в дальнейшем эти соотношения могут сильно изменяться в силу неодинаковой выживаемости особей разного пола ( у человека к 50 годам соотношение мужчин и женщин составляет 85 : 100 , а к 85 годам — 50 : 100 )
· Развитие признаков пола генетически контролируется , т. к. закономерно воспроизводтся в ряду поколений и наследуется как менделирующий признак
· Самцы и самки различаются по набору хромосом
Аутосомы — хромосомы одинаковые в клетках мужских и женских особей ( образуют гомологичные пары )
Половые хромосомы (гетеросомы) — пара хромосом , отличающиеся у разных полов по морфологии и заключённой в них генетической информации
· Большую из половых хромосом принято называть X(икс) — хромосомой , меньшую Y (игрек) -хромосомой ( у некоторых животных Y- хромосома может отсутствовать )
· Зигота человека и других организмов потенциально бисексуальна . Главным фактором , сдвигающим фенотип в мужскую сторону , является Y-хромосома . Выбор направления происходит на 6 -10 неделе эмбриогенеза
· В Y- хромосоме человека находится ген дифференцировки семенников , которые вырабатывают гормоны , обеспечивающие развитие мужских вторичных половых признаков( при отсутсвии Y-хромосомы зачаточные репродуктивные органы дифференцируются в яичники и у зародыша развиваются женские половые признаки )
· Пол будущего организма определяется сочетанием половых хромосом в зиготе в момент оплодотворения
· В зависимости от сочетания половых хромосом в зиготе различают 5 типов определения пола :
1. XX , XY- у всех млекопитающих ( в том числе у человека ) , дрозофилы
2. XY , XX — у части насекомых ( бабочек , ручейников ) , птиц , рептилий , некоторых амфибий и рыб
3. XX , X0 ( нет Y- хромосомы ) – нек.насекомые : клопы, прямокрылые ( кузнечики)
4. X0 , XX — у тли
5. гаплоидно — диплоидный ( 2n , n ) встречается , например , у пчёл : самцы развиваются из неоплодотворённых гаплоидных яиц , самки — из оплодотворённых диплоидных ( эти организмы не имеют половых хромосом )
· Пол особи может определяться : до оплодотворения яйцеклетки сперматозоидом ( прогамное определение пола ); в момент оплодотворения ( сингамное определение пола →чаще всего ) ; после оплодотворения ( эпигамное определение пола ) — у морского кольчатого червя бонеллия , если личинка садится на дно , из неё развивается самка , а если прикрепляется к хоботку взрослой самки , то самец
· У дрозофилы Y — хромосома по размеру близка к к X- хромосоме , однако она генетически инертна , т. к. состоит в основном из гетерохроматина и играет незначительную роль в определении пола (особи с кариотипом X0 внешне типичные самцы , но стерильные , а особи с кариотипом XXY — плодовитые самки )
· У многих организмов пол определяется не столько сочетанием в зиготе X- иY-хромосом , сколько соотношением числа X-хромосом и наборов аутосом — половой индекс ( у нормальных самок половой индекс равен 1 ( 2X : 2 А ) , у нормальных самцов — 0,5 ( XY: 2А ) ; при половом индексе более 1 ( 3X : 2А развиваются сверхсамки , при величине ниже 0,5 — самцы , при значении более 0,5 , но менее 1 ( 2X : 3А развиваются интерсексы
Интерсексы — особи , занимающие по половым признакам промежуточное положение между самцами и самками ( не путать с гермафродитами )
· При утрате X- хромосомы одной из клеток на стадии первого деления зиготы развивается организм , половина клеток которого имеет нормальный кариотип (2АXX ) , несёт признаки самки, а другая половина, клетки которой лишены одной X- хромосомы ( 2АXО ) , имеет признаки самца — явление гинандроморфизма
Гинандроморфы — организм , одна часть которы , включая половые желез , женског, а другая — мужского типа
Аутосомное наследование— это наследование признаков , гены которых локализованы в аутосомах
Сцеплённое с полом наследование— это наследование признаков , гены которых локализованы в половых хромосомах ( открыто Т. Х.Морганом )
признаки , сцеплённые с полом , наследуются не в соответствии с законами Менделя
у человека признаки , наследуемые через Y- хромосому , могутбыть только у лиц мужского пола , а наследуемые через X- хромосому — у лиц обоих полов
признаки , наследуемые через Y-хромосому , называются голандрические ( голандрическое наследование )
Y- сцеплённое ( голандрическое наследование )— наследование признаков , гены которых локализованы только в Y- хромосоме и передающихся от отца ко всем его сыновьям ( фенотипически проявляются в каждом поколении )
— у человека таких генов совсем немного : гипертрихоз ( развитие волос по краю ушной раковины , перепонки между пальцами , ген дифференцировки семенников
по генам , локализованным в X- хромосоме женщины могут быть как гомо-,так и гетерозиготными а рецессивные аллели генов проявляются у них только в гомозиготном сотоянии -X а X а ; у мужчин все гены X-хромосомы , даже рецессивные , сразу же проявляются в фенотипе ( такой организм называют гемизиготным
Гемизиготные признаки— признаки , гены которых локализованы только в одной ( X или Y ) половой хромосоме и не имеющие аллельных генов в другой половой хромосоме (по ↑ генов X-хромосомы мужской организм гемизиготен)
X — сцеплённое наследование — У человека выявлена локализация в X-хромосоме 95 признаков ; подавляющее их число гемизиготны ( т. е. не имеют гомологичных аллелей в Y-хромосоме ) — это дальтонизм , гемофилия , атрофия зрительного нерва , несахарный диабет → для женщин (а) для мужчин (А) ( в силу их гемизиготности ) ; м\б промежуточный характер проявления признака у гетерозигот → окраска шерсти у кошек.
Гены общих гомологичных участков ( локусов ) , имеющиеся и в X- и в Y-хромосоме образуют синапсис при коньюгации , возможен кроссинговер.
Гены гомологичных участков наследуются одинаково у мужчин и женщин.
признаки гомологичных участков называются неполно ( частично ) сцеплённымис полом.
Признаки , ограниченные полом — признаки , гены которых локализованы в аутосомах , но проявляющиеся в зависимости от пола ( у одного пола признак проявится , у другого — нет )
· Проявление этих признаков зависит от соотношения половых гормонов
· Примерами таких признаков является наличие рогов у оленей ( самцы рогаты , а самки безроги ) или яйценоскость птиц , облысение у человека
Источник